Generalized SU(2) covariant Wigner functions and some of their applications

We survey some applications of SU(2) covariant maps to the phase space quantum mechanics of systems with fixed or variable spin. A generalization to SU(3) symmetry is also briefly discussed in framework of the axiomatic Stratonovich–Weyl formulation.

[1]  D. Varshalovich,et al.  Quantum Theory of Angular Momentum , 1988 .

[2]  S. Chumakov,et al.  A Group-Theoretical Approach to Quantum Optics , 2009 .

[3]  J. Rehacek,et al.  Orbital angular momentum in phase space , 2010, 1011.6184.

[4]  H. Kastrup Quantization of the canonically conjugate pair angle and orbital angular momentum , 2005, quant-ph/0510234.

[5]  Description of quantum spin using functions on the sphere S2 , 1991 .

[6]  F. Schroeck,et al.  Quantum Mechanics on Phase Space , 1995 .

[7]  F. Arecchi,et al.  Atomic coherent states in quantum optics , 1972 .

[8]  I. Jex,et al.  QUANTUM DESCRIPTION OF NONLINEARLY INTERACTING OSCILLATORS VIA CLASSICAL TRAJECTORIES , 1997 .

[9]  J. Gracia-Bond́ıa,et al.  Moyal quantization with compact symmetry groups and noncommutative harmonic analysis , 1990 .

[10]  G. Agarwal,et al.  Atomic Schrödinger cat states , 1997 .

[11]  Kurt Bernardo Wolf,et al.  Wigner functions for curved spaces. II. On spheres , 2003 .

[12]  C. Zachos,et al.  Quantum mechanics in phase space : an overview with selected papers , 2005 .

[13]  Towards a complete and continuous Wigner function for an ensemble of spins or qubits , 2012, 1210.2300.

[14]  Bizarro Weyl-Wigner formalism for rotation-angle and angular-momentum variables in quantum mechanics. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[15]  D. Braun,et al.  Classicality of spin states , 2008, 0805.2592.

[16]  D. Ellinas Phase operators via group contraction , 1991 .

[17]  K. Blum Density Matrix Theory and Applications , 1981 .

[18]  Daniela Dragoman,et al.  Applications of the Wigner Distribution Function in Signal Processing , 2005, EURASIP J. Adv. Signal Process..

[19]  R. Gilmore,et al.  Classical-quantum correspondence for multilevel systems , 1975 .

[20]  K. Hornberger,et al.  Quantum phase-space representation for curved configuration spaces , 2013, 1309.5017.

[21]  M. Walton,et al.  On Wigner functions and a damped star product in dissipative phase-space quantum mechanics , 2008, 0810.3893.

[22]  Drummond,et al.  Comment on "Langevin equation for the squeezing of light by means of a parametric oscillator" , 1991, Physical review. A, Atomic, molecular, and optical physics.

[23]  G. Agarwal,et al.  Calculus for Functions of Noncommuting Operators and General Phase-Space Methods in Quantum Mechanics. III. A Generalized Wick Theorem and Multitime Mapping , 1970 .

[24]  M. Paris,et al.  Nonclassicality criteria from phase-space representations and information-theoretical constraints are maximally inequivalent. , 2012, Physical review letters.

[25]  Eric J. Heller,et al.  Wigner phase space method: Analysis for semiclassical applications , 1976 .

[26]  T. A. Osborn,et al.  Moyal Quantum Mechanics: The Semiclassical Heisenberg Dynamics , 1994, hep-th/9409120.

[27]  Howard J. Carmichael,et al.  Dissipation in Quantum Mechanics: The Master Equation Approach , 1999 .

[28]  Franco Nori,et al.  Quantum spin squeezing , 2010, 1011.2978.

[29]  K. Wolf,et al.  Wigner distribution function for finite systems , 1998 .

[30]  Semiclassically concentrated quantum states , 1992 .

[31]  W. Vogel,et al.  Nonclassicality quasiprobability of single-photon-added thermal states , 2011, 1101.1741.

[32]  A. Polkovnikov Phase space representation of quantum dynamics , 2009, 0905.3384.

[33]  P. Zoller,et al.  Quantum Superposition States of Bose-Einstein Condensates , 1997, quant-ph/9706034.

[34]  M. Albrow,et al.  Properties of photon plus two-jet events in {ovr p}p collisions at {radical}{ovr s}= 1.8 TeV. , 1998 .

[35]  F. Bayen,et al.  Deformation theory and quantization. I. Deformations of symplectic structures , 1978 .

[36]  A. Bohr,et al.  Solutions for Particle-Rotor and Cranking Models for Single j Configuration , 1980 .

[37]  B. Sanders,et al.  Asymptotic limits of SU(2) and SU(3) Wigner functions , 2001 .

[38]  A. Klimov,et al.  Semiclassical approach to squeezing-like transformations in quantum systems with higher symmetries , 2013 .

[39]  A. Perelomov Generalized Coherent States and Their Applications , 1986 .

[40]  H. Fehske,et al.  COMPARATIVE STUDY OF SEMICLASSICAL APPROACHES TO QUANTUM DYNAMICS , 2008, 0810.4302.

[41]  M. Carolina Nemes,et al.  Recoherence in the entanglement dynamics and classical orbits in the N-atom Jaynes-Cummings model , 2001 .

[42]  G. Agarwal Relation between atomic coherent-state representation, state multipoles, and generalized phase-space distributions , 1981 .

[43]  Girish S. Agarwal,et al.  CALCULUS FOR FUNCTIONS OF NONCOMMUTING OPERATORS AND GENERAL PHASE-SPACE METHODS IN QUANTUM MECHANICS. I. MAPPING THEOREMS AND ORDERING OF FUNCTIONS OF NONCOMMUTING OPERATORS. , 1970 .

[44]  L. Cohen Generalized Phase-Space Distribution Functions , 1966 .

[45]  On the propagation of semiclassical Wigner functions , 2001, math-ph/0111012.

[46]  A. Klimov,et al.  Tomographic representation of spin and quark states , 2002 .

[47]  Milburn,et al.  Quantum and classical Liouville dynamics of the anharmonic oscillator. , 1986, Physical review. A, General physics.

[48]  K. Wolf,et al.  Finite Kerr medium: Macroscopic quantum superposition states and Wigner functions on the sphere , 1999 .

[49]  M. Scully,et al.  Distribution functions in physics: Fundamentals , 1984 .

[50]  Bryan M. Hennelly,et al.  Phase-space optics , 2015 .

[51]  Drummond,et al.  Limits to squeezing and phase information in the parametric amplifier. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[52]  V. Man'ko,et al.  Quantum evolution of the localized state , 1990 .

[53]  A. Luis A SU(3) Wigner function for three-dimensional systems , 2008 .

[54]  J. Romero,et al.  Semiclassical phase-space dynamics of compound quantum systems: SU(2) covariant approach , 2015 .

[55]  S. V. Titov,et al.  Phase space description of spin dynamics , 2008 .

[56]  L. L. Sanchez-Soto,et al.  Quantum phases of a qutrit , 2003 .

[57]  V. Man'ko,et al.  Inverse spin-s portrait and representation of qudit states by single probability vectors , 2010, 1001.4813.

[58]  Kae Nemoto,et al.  Wigner Functions for Arbitrary Quantum Systems. , 2016, Physical review letters.

[59]  H. Lipkin,et al.  Validity of many-body approximation methods for a solvable model: (I). Exact solutions and perturbation theory , 1965 .

[60]  E. Wigner On the quantum correction for thermodynamic equilibrium , 1932 .

[61]  A. Luis,et al.  Phase-difference operator. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[62]  Kevin Cahill,et al.  Ordered Expansions in Boson Amplitude Operators , 1969 .

[63]  G. M. D'Ariano,et al.  Spin tomography , 2002, quant-ph/0210105.

[64]  K. Wolf,et al.  The Wigner Function for General Lie Groups and the Wavelet Transform , 2000 .

[65]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[66]  Wigner functions, squeezing properties, and slow decoherence of a mesoscopic superposition of two-level atoms , 1999, quant-ph/9904058.

[67]  Vladimir I. Man’ko,et al.  Positive distribution description for spin states , 1997 .

[68]  D. Braun,et al.  Quantifying quantumness and the quest for Queens of Quantum , 2010, 1002.2158.

[69]  SU(N)-symmetric quasi-probability distribution functions , 2011, 1108.2075.

[70]  Aspects of Nonlinear and Noncanonical Transformations in Quantum Mechanics , 1999 .

[71]  M. Nemes,et al.  Quantum time scales and the classical limit: analytic results for some simple systems. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[72]  Zibin,et al.  Inadequacy of Ehrenfest's theorem to characterize the classical regime. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[73]  J. Romero,et al.  Semiclassical dynamics of a rigid rotor: SO(3) covariant approach , 2015 .

[74]  K. Wolf,et al.  Evolution under polynomial Hamiltonians in quantum and optical phase spaces , 1997 .

[75]  Correlation transfer in large-spin chains , 2016, 1605.09476.

[76]  Entanglement dynamics for two interacting spins , 2005, quant-ph/0510162.

[77]  Bopp operators and phase-space spin dynamics: application to rotational quantum Brownian motion , 2006, quant-ph/0611194.

[78]  N. Atakishiyev,et al.  Wigner distribution function for Euclidean systems , 1998 .

[79]  M. Hennings,et al.  Mathematical Aspects of Weyl Quantization and Phase , 2000 .

[80]  H. Guise,et al.  Coherent state realizations of su(n+1) on the n-torus , 2002 .

[81]  Kurt Bernardo Wolf,et al.  Wigner distribution function for paraxial polychromatic optics , 1996 .

[82]  M. Gadella Moyal Formulation of Quantum Mechanics , 1995 .

[83]  V. P. Karassiov,et al.  Quantum interference of light polarization states via polarization quasiprobability functions , 2002 .

[84]  J. Řeháček,et al.  Angular performance measure for tighter uncertainty relations , 2009, 0910.4670.

[85]  R. Gilmore,et al.  Coherent states: Theory and some Applications , 1990 .

[86]  Girish S. Agarwal,et al.  Calculus for functions of noncommuting operators and general phase-space methods in quantum mechanics. II. Quantum mechanics in phase space , 1970 .

[87]  P. M. Rios,et al.  Symbol Correspondences for Spin Systems , 2014, 1402.7051.

[88]  M. Nemes,et al.  QUANTUM DYNAMICAL MANIFESTATION OF CHAOTIC BEHAVIOR IN THE PROCESS OF ENTANGLEMENT , 1998 .

[89]  Anirban Pathak,et al.  Quasiprobability distributions in open quantum systems: spin-qubit systems , 2015, 1504.02030.

[90]  Heller,et al.  Classical and semiclassical approximations for incoherent neutron scattering. , 1987, Physical review. A, General physics.

[91]  N. Henriksen,et al.  Quantum dynamics via a time propagator in Wigner’s phase space , 1995 .

[92]  Lee,et al.  Measure of the nonclassicality of nonclassical states. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[93]  Discrete Moyal-type representations for a spin , 2000, quant-ph/0004022.

[94]  S. Chaturvedi,et al.  Wigner-Weyl correspondence in quantum mechanics for continuous and discrete systems-a Dirac-inspired view , 2006 .

[95]  Zurek,et al.  Decoherence, chaos, and the second law. , 1994, Physical review letters.

[96]  A. Klimov Exact evolution equations for SU(2) quasidistribution functions , 2002 .

[97]  G. Leuchs,et al.  Multipolar hierarchy of efficient quantum polarization measures , 2013, 1401.3544.

[98]  Robert Botet,et al.  Large-size critical behavior of infinitely coordinated systems , 1983 .

[99]  Daniela Dragoman,et al.  I: The Wigner Distribution Function in Optics and Optoelectronics , 1997 .

[100]  Mariano A. del Olmo,et al.  The Stratonovich–Weyl correspondence for one‐dimensional kinematical groups , 1991 .

[101]  Agarwal,et al.  Wigner distribution of a general angular-momentum state: Applications to a collection of two-level atoms. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[102]  W. Coffey,et al.  SPIN RELAXATION IN PHASE SPACE , 2016, 1603.00377.

[103]  J. Gracia-Bond́ıa,et al.  The Moyal representation for spin , 1989 .

[104]  K. Życzkowski,et al.  Negativity of the Wigner function as an indicator of non-classicality , 2004, quant-ph/0406015.

[105]  E. Sudarshan Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams , 1963 .

[106]  Hai-Woong Lee,et al.  Theory and application of the quantum phase-space distribution functions , 1995 .

[107]  R. Gilmore,et al.  Lie Groups, Lie Algebras, and Some of Their Applications , 1974 .

[108]  Entanglement in Phase Space , 2006, quant-ph/0612029.

[109]  S. Chumakov,et al.  On the SU(2) Wigner function dynamics , 2002 .

[110]  Eric J. Heller,et al.  Cellular dynamics: A new semiclassical approach to time‐dependent quantum mechanics , 1991 .

[111]  M. Berry Semi-classical mechanics in phase space: A study of Wigner’s function , 1977, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[112]  A. Klimov,et al.  Moyal-like form of the star product for generalized SU(2) Stratonovich-Weyl symbols , 2002 .

[113]  D. Tannor,et al.  Phase space approach to theories of quantum dissipation , 1997 .

[114]  Kevin Cahill,et al.  DENSITY OPERATORS AND QUASIPROBABILITY DISTRIBUTIONS. , 1969 .

[115]  C. Brif,et al.  Phase space formulation of quantum mechanics and quantum state reconstruction for physical systems with Lie group symmetries , 1998, quant-ph/9809052.

[116]  Dmitrií A. Sadovskií,et al.  Monodromy, diabolic points, and angular momentum coupling , 1999 .

[117]  Stephen M. Barnett,et al.  The quantum phase operator : a review , 2007 .

[118]  A. Royer Wigner function as the expectation value of a parity operator , 1977 .

[119]  F. Berezin General concept of quantization , 1975 .

[120]  A. M. Almeida The Weyl representation in classical and quantum mechanics , 1998 .

[121]  A. Klimov,et al.  Classical evolution of quantum fluctuations in spin-like systems : squeezing and entanglement , 2005 .

[122]  M. Alonso,et al.  QUANTUM MECHANICS (GENERAL AND NONRELATIVISTIC) 5857 Wigner functions for curved spaces. I. On hyperboloids , 2002, quant-ph/0205041.

[123]  L. Cohen Quantization problem and variational principle in the phase‐space formulation of quantum mechanics , 1976 .

[124]  A. Luis,et al.  SU(2)-invariant depolarization of quantum states of light , 2013, 1310.8485.

[125]  A. Klimov,et al.  Quasi-probability distributions for the simplest dynamical groups. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[126]  J. E. Moyal Quantum mechanics as a statistical theory , 1949, Mathematical Proceedings of the Cambridge Philosophical Society.

[127]  V. Man'ko,et al.  Star-Product of Generalized Wigner-Weyl Symbols on SU(2) Group, Deformations, and Tomographic Probability Distribution , 2000 .

[128]  Wigner–Weyl isomorphism for quantum mechanics on Lie groups , 2004, quant-ph/0407257.

[129]  Sergei Petrovich Novikov,et al.  Integrable Systems. I , 2001 .

[130]  M. Nemes,et al.  Rapid decoherence in integrable systems: a border effect. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[131]  A. Luis,et al.  6 – Quantum phase difference, phase measurements and stokes operators , 2000 .

[132]  A. Luis Polarization in Quantum Optics , 2016 .

[133]  W. Vogel,et al.  Nonclassicality filters and quasiprobabilities , 2010, 1004.0788.

[134]  W. Schleich Quantum Optics in Phase Space: SCHLEICH:QUANTUM OPTICS O-BK , 2005 .

[135]  A. Klimov,et al.  FAST TRACK COMMUNICATION: General approach to \mathfrak {SU}(n) quasi-distribution functions , 2010 .