Generalized SU(2) covariant Wigner functions and some of their applications
暂无分享,去创建一个
Andrei B. Klimov | J. Romero | A. Klimov | J. Romero | H. Guise | J. L. Romero | Hubert de Guise | H. de Guise | José Luis Romero
[1] D. Varshalovich,et al. Quantum Theory of Angular Momentum , 1988 .
[2] S. Chumakov,et al. A Group-Theoretical Approach to Quantum Optics , 2009 .
[3] J. Rehacek,et al. Orbital angular momentum in phase space , 2010, 1011.6184.
[4] H. Kastrup. Quantization of the canonically conjugate pair angle and orbital angular momentum , 2005, quant-ph/0510234.
[5] Description of quantum spin using functions on the sphere S2 , 1991 .
[6] F. Schroeck,et al. Quantum Mechanics on Phase Space , 1995 .
[7] F. Arecchi,et al. Atomic coherent states in quantum optics , 1972 .
[8] I. Jex,et al. QUANTUM DESCRIPTION OF NONLINEARLY INTERACTING OSCILLATORS VIA CLASSICAL TRAJECTORIES , 1997 .
[9] J. Gracia-Bond́ıa,et al. Moyal quantization with compact symmetry groups and noncommutative harmonic analysis , 1990 .
[10] G. Agarwal,et al. Atomic Schrödinger cat states , 1997 .
[11] Kurt Bernardo Wolf,et al. Wigner functions for curved spaces. II. On spheres , 2003 .
[12] C. Zachos,et al. Quantum mechanics in phase space : an overview with selected papers , 2005 .
[13] Towards a complete and continuous Wigner function for an ensemble of spins or qubits , 2012, 1210.2300.
[14] Bizarro. Weyl-Wigner formalism for rotation-angle and angular-momentum variables in quantum mechanics. , 1994, Physical review. A, Atomic, molecular, and optical physics.
[15] D. Braun,et al. Classicality of spin states , 2008, 0805.2592.
[16] D. Ellinas. Phase operators via group contraction , 1991 .
[17] K. Blum. Density Matrix Theory and Applications , 1981 .
[18] Daniela Dragoman,et al. Applications of the Wigner Distribution Function in Signal Processing , 2005, EURASIP J. Adv. Signal Process..
[19] R. Gilmore,et al. Classical-quantum correspondence for multilevel systems , 1975 .
[20] K. Hornberger,et al. Quantum phase-space representation for curved configuration spaces , 2013, 1309.5017.
[21] M. Walton,et al. On Wigner functions and a damped star product in dissipative phase-space quantum mechanics , 2008, 0810.3893.
[22] Drummond,et al. Comment on "Langevin equation for the squeezing of light by means of a parametric oscillator" , 1991, Physical review. A, Atomic, molecular, and optical physics.
[23] G. Agarwal,et al. Calculus for Functions of Noncommuting Operators and General Phase-Space Methods in Quantum Mechanics. III. A Generalized Wick Theorem and Multitime Mapping , 1970 .
[24] M. Paris,et al. Nonclassicality criteria from phase-space representations and information-theoretical constraints are maximally inequivalent. , 2012, Physical review letters.
[25] Eric J. Heller,et al. Wigner phase space method: Analysis for semiclassical applications , 1976 .
[26] T. A. Osborn,et al. Moyal Quantum Mechanics: The Semiclassical Heisenberg Dynamics , 1994, hep-th/9409120.
[27] Howard J. Carmichael,et al. Dissipation in Quantum Mechanics: The Master Equation Approach , 1999 .
[28] Franco Nori,et al. Quantum spin squeezing , 2010, 1011.2978.
[29] K. Wolf,et al. Wigner distribution function for finite systems , 1998 .
[30] Semiclassically concentrated quantum states , 1992 .
[31] W. Vogel,et al. Nonclassicality quasiprobability of single-photon-added thermal states , 2011, 1101.1741.
[32] A. Polkovnikov. Phase space representation of quantum dynamics , 2009, 0905.3384.
[33] P. Zoller,et al. Quantum Superposition States of Bose-Einstein Condensates , 1997, quant-ph/9706034.
[34] M. Albrow,et al. Properties of photon plus two-jet events in {ovr p}p collisions at {radical}{ovr s}= 1.8 TeV. , 1998 .
[35] F. Bayen,et al. Deformation theory and quantization. I. Deformations of symplectic structures , 1978 .
[36] A. Bohr,et al. Solutions for Particle-Rotor and Cranking Models for Single j Configuration , 1980 .
[37] B. Sanders,et al. Asymptotic limits of SU(2) and SU(3) Wigner functions , 2001 .
[38] A. Klimov,et al. Semiclassical approach to squeezing-like transformations in quantum systems with higher symmetries , 2013 .
[39] A. Perelomov. Generalized Coherent States and Their Applications , 1986 .
[40] H. Fehske,et al. COMPARATIVE STUDY OF SEMICLASSICAL APPROACHES TO QUANTUM DYNAMICS , 2008, 0810.4302.
[41] M. Carolina Nemes,et al. Recoherence in the entanglement dynamics and classical orbits in the N-atom Jaynes-Cummings model , 2001 .
[42] G. Agarwal. Relation between atomic coherent-state representation, state multipoles, and generalized phase-space distributions , 1981 .
[43] Girish S. Agarwal,et al. CALCULUS FOR FUNCTIONS OF NONCOMMUTING OPERATORS AND GENERAL PHASE-SPACE METHODS IN QUANTUM MECHANICS. I. MAPPING THEOREMS AND ORDERING OF FUNCTIONS OF NONCOMMUTING OPERATORS. , 1970 .
[44] L. Cohen. Generalized Phase-Space Distribution Functions , 1966 .
[45] On the propagation of semiclassical Wigner functions , 2001, math-ph/0111012.
[46] A. Klimov,et al. Tomographic representation of spin and quark states , 2002 .
[47] Milburn,et al. Quantum and classical Liouville dynamics of the anharmonic oscillator. , 1986, Physical review. A, General physics.
[48] K. Wolf,et al. Finite Kerr medium: Macroscopic quantum superposition states and Wigner functions on the sphere , 1999 .
[49] M. Scully,et al. Distribution functions in physics: Fundamentals , 1984 .
[50] Bryan M. Hennelly,et al. Phase-space optics , 2015 .
[51] Drummond,et al. Limits to squeezing and phase information in the parametric amplifier. , 1993, Physical review. A, Atomic, molecular, and optical physics.
[52] V. Man'ko,et al. Quantum evolution of the localized state , 1990 .
[53] A. Luis. A SU(3) Wigner function for three-dimensional systems , 2008 .
[54] J. Romero,et al. Semiclassical phase-space dynamics of compound quantum systems: SU(2) covariant approach , 2015 .
[55] S. V. Titov,et al. Phase space description of spin dynamics , 2008 .
[56] L. L. Sanchez-Soto,et al. Quantum phases of a qutrit , 2003 .
[57] V. Man'ko,et al. Inverse spin-s portrait and representation of qudit states by single probability vectors , 2010, 1001.4813.
[58] Kae Nemoto,et al. Wigner Functions for Arbitrary Quantum Systems. , 2016, Physical review letters.
[59] H. Lipkin,et al. Validity of many-body approximation methods for a solvable model: (I). Exact solutions and perturbation theory , 1965 .
[60] E. Wigner. On the quantum correction for thermodynamic equilibrium , 1932 .
[61] A. Luis,et al. Phase-difference operator. , 1993, Physical review. A, Atomic, molecular, and optical physics.
[62] Kevin Cahill,et al. Ordered Expansions in Boson Amplitude Operators , 1969 .
[63] G. M. D'Ariano,et al. Spin tomography , 2002, quant-ph/0210105.
[64] K. Wolf,et al. The Wigner Function for General Lie Groups and the Wavelet Transform , 2000 .
[65] G. Vidal,et al. Computable measure of entanglement , 2001, quant-ph/0102117.
[66] Wigner functions, squeezing properties, and slow decoherence of a mesoscopic superposition of two-level atoms , 1999, quant-ph/9904058.
[67] Vladimir I. Man’ko,et al. Positive distribution description for spin states , 1997 .
[68] D. Braun,et al. Quantifying quantumness and the quest for Queens of Quantum , 2010, 1002.2158.
[69] SU(N)-symmetric quasi-probability distribution functions , 2011, 1108.2075.
[70] Aspects of Nonlinear and Noncanonical Transformations in Quantum Mechanics , 1999 .
[71] M. Nemes,et al. Quantum time scales and the classical limit: analytic results for some simple systems. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.
[72] Zibin,et al. Inadequacy of Ehrenfest's theorem to characterize the classical regime. , 1994, Physical review. A, Atomic, molecular, and optical physics.
[73] J. Romero,et al. Semiclassical dynamics of a rigid rotor: SO(3) covariant approach , 2015 .
[74] K. Wolf,et al. Evolution under polynomial Hamiltonians in quantum and optical phase spaces , 1997 .
[75] Correlation transfer in large-spin chains , 2016, 1605.09476.
[76] Entanglement dynamics for two interacting spins , 2005, quant-ph/0510162.
[77] Bopp operators and phase-space spin dynamics: application to rotational quantum Brownian motion , 2006, quant-ph/0611194.
[78] N. Atakishiyev,et al. Wigner distribution function for Euclidean systems , 1998 .
[79] M. Hennings,et al. Mathematical Aspects of Weyl Quantization and Phase , 2000 .
[80] H. Guise,et al. Coherent state realizations of su(n+1) on the n-torus , 2002 .
[81] Kurt Bernardo Wolf,et al. Wigner distribution function for paraxial polychromatic optics , 1996 .
[82] M. Gadella. Moyal Formulation of Quantum Mechanics , 1995 .
[83] V. P. Karassiov,et al. Quantum interference of light polarization states via polarization quasiprobability functions , 2002 .
[84] J. Řeháček,et al. Angular performance measure for tighter uncertainty relations , 2009, 0910.4670.
[85] R. Gilmore,et al. Coherent states: Theory and some Applications , 1990 .
[86] Girish S. Agarwal,et al. Calculus for functions of noncommuting operators and general phase-space methods in quantum mechanics. II. Quantum mechanics in phase space , 1970 .
[87] P. M. Rios,et al. Symbol Correspondences for Spin Systems , 2014, 1402.7051.
[88] M. Nemes,et al. QUANTUM DYNAMICAL MANIFESTATION OF CHAOTIC BEHAVIOR IN THE PROCESS OF ENTANGLEMENT , 1998 .
[89] Anirban Pathak,et al. Quasiprobability distributions in open quantum systems: spin-qubit systems , 2015, 1504.02030.
[90] Heller,et al. Classical and semiclassical approximations for incoherent neutron scattering. , 1987, Physical review. A, General physics.
[91] N. Henriksen,et al. Quantum dynamics via a time propagator in Wigner’s phase space , 1995 .
[92] Lee,et al. Measure of the nonclassicality of nonclassical states. , 1991, Physical review. A, Atomic, molecular, and optical physics.
[93] Discrete Moyal-type representations for a spin , 2000, quant-ph/0004022.
[94] S. Chaturvedi,et al. Wigner-Weyl correspondence in quantum mechanics for continuous and discrete systems-a Dirac-inspired view , 2006 .
[95] Zurek,et al. Decoherence, chaos, and the second law. , 1994, Physical review letters.
[96] A. Klimov. Exact evolution equations for SU(2) quasidistribution functions , 2002 .
[97] G. Leuchs,et al. Multipolar hierarchy of efficient quantum polarization measures , 2013, 1401.3544.
[98] Robert Botet,et al. Large-size critical behavior of infinitely coordinated systems , 1983 .
[99] Daniela Dragoman,et al. I: The Wigner Distribution Function in Optics and Optoelectronics , 1997 .
[100] Mariano A. del Olmo,et al. The Stratonovich–Weyl correspondence for one‐dimensional kinematical groups , 1991 .
[101] Agarwal,et al. Wigner distribution of a general angular-momentum state: Applications to a collection of two-level atoms. , 1994, Physical review. A, Atomic, molecular, and optical physics.
[102] W. Coffey,et al. SPIN RELAXATION IN PHASE SPACE , 2016, 1603.00377.
[103] J. Gracia-Bond́ıa,et al. The Moyal representation for spin , 1989 .
[104] K. Życzkowski,et al. Negativity of the Wigner function as an indicator of non-classicality , 2004, quant-ph/0406015.
[105] E. Sudarshan. Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams , 1963 .
[106] Hai-Woong Lee,et al. Theory and application of the quantum phase-space distribution functions , 1995 .
[107] R. Gilmore,et al. Lie Groups, Lie Algebras, and Some of Their Applications , 1974 .
[108] Entanglement in Phase Space , 2006, quant-ph/0612029.
[109] S. Chumakov,et al. On the SU(2) Wigner function dynamics , 2002 .
[110] Eric J. Heller,et al. Cellular dynamics: A new semiclassical approach to time‐dependent quantum mechanics , 1991 .
[111] M. Berry. Semi-classical mechanics in phase space: A study of Wigner’s function , 1977, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[112] A. Klimov,et al. Moyal-like form of the star product for generalized SU(2) Stratonovich-Weyl symbols , 2002 .
[113] D. Tannor,et al. Phase space approach to theories of quantum dissipation , 1997 .
[114] Kevin Cahill,et al. DENSITY OPERATORS AND QUASIPROBABILITY DISTRIBUTIONS. , 1969 .
[115] C. Brif,et al. Phase space formulation of quantum mechanics and quantum state reconstruction for physical systems with Lie group symmetries , 1998, quant-ph/9809052.
[116] Dmitrií A. Sadovskií,et al. Monodromy, diabolic points, and angular momentum coupling , 1999 .
[117] Stephen M. Barnett,et al. The quantum phase operator : a review , 2007 .
[118] A. Royer. Wigner function as the expectation value of a parity operator , 1977 .
[119] F. Berezin. General concept of quantization , 1975 .
[120] A. M. Almeida. The Weyl representation in classical and quantum mechanics , 1998 .
[121] A. Klimov,et al. Classical evolution of quantum fluctuations in spin-like systems : squeezing and entanglement , 2005 .
[122] M. Alonso,et al. QUANTUM MECHANICS (GENERAL AND NONRELATIVISTIC) 5857 Wigner functions for curved spaces. I. On hyperboloids , 2002, quant-ph/0205041.
[123] L. Cohen. Quantization problem and variational principle in the phase‐space formulation of quantum mechanics , 1976 .
[124] A. Luis,et al. SU(2)-invariant depolarization of quantum states of light , 2013, 1310.8485.
[125] A. Klimov,et al. Quasi-probability distributions for the simplest dynamical groups. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.
[126] J. E. Moyal. Quantum mechanics as a statistical theory , 1949, Mathematical Proceedings of the Cambridge Philosophical Society.
[127] V. Man'ko,et al. Star-Product of Generalized Wigner-Weyl Symbols on SU(2) Group, Deformations, and Tomographic Probability Distribution , 2000 .
[128] Wigner–Weyl isomorphism for quantum mechanics on Lie groups , 2004, quant-ph/0407257.
[129] Sergei Petrovich Novikov,et al. Integrable Systems. I , 2001 .
[130] M. Nemes,et al. Rapid decoherence in integrable systems: a border effect. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[131] A. Luis,et al. 6 – Quantum phase difference, phase measurements and stokes operators , 2000 .
[132] A. Luis. Polarization in Quantum Optics , 2016 .
[133] W. Vogel,et al. Nonclassicality filters and quasiprobabilities , 2010, 1004.0788.
[134] W. Schleich. Quantum Optics in Phase Space: SCHLEICH:QUANTUM OPTICS O-BK , 2005 .
[135] A. Klimov,et al. FAST TRACK COMMUNICATION: General approach to \mathfrak {SU}(n) quasi-distribution functions , 2010 .