Sequence Analysis

[1]  Baozhen Shan,et al.  De novo peptide sequencing by deep learning , 2017, Proceedings of the National Academy of Sciences.

[2]  P. Pevzner,et al.  metaSPAdes: a new versatile metagenomic assembler. , 2017, Genome research.

[3]  S. Koren,et al.  Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation , 2016, bioRxiv.

[4]  K. Vyatkina De Novo Sequencing of Top-Down Tandem Mass Spectra: A Next Step towards Retrieving a Complete Protein Sequence , 2017, Proteomes.

[5]  Minoru Kanehisa,et al.  KEGG: new perspectives on genomes, pathways, diseases and drugs , 2016, Nucleic Acids Res..

[6]  B. Tian,et al.  RNA‐Seq methods for transcriptome analysis , 2017, Wiley interdisciplinary reviews. RNA.

[7]  Ryan R. Wick,et al.  Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads , 2016, bioRxiv.

[8]  Elena Bushmanova,et al.  rnaQUAST: a quality assessment tool for de novo transcriptome assemblies , 2016, Bioinform..

[9]  Sarah C. Ayling,et al.  The Ensembl gene annotation system , 2016, Database J. Biol. Databases Curation.

[10]  Lior Pachter,et al.  Near-optimal probabilistic RNA-seq quantification , 2016, Nature Biotechnology.

[11]  Niranjan Nagarajan,et al.  Fast and sensitive mapping of nanopore sequencing reads with GraphMap , 2016, Nature Communications.

[12]  Dmitry Antipov,et al.  hybridSPAdes: an algorithm for hybrid assembly of short and long reads , 2016, Bioinform..

[13]  B. Chain,et al.  The sequence of sequencers: The history of sequencing DNA , 2016, Genomics.

[14]  Heng Li,et al.  Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences , 2015, Bioinform..

[15]  Minoru Kanehisa,et al.  KEGG as a reference resource for gene and protein annotation , 2015, Nucleic Acids Res..

[16]  Ana Conesa,et al.  Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data , 2015, Bioinform..

[17]  Haixu Tang,et al.  Utilizing de Bruijn graph of metagenome assembly for metatranscriptome analysis , 2015, Bioinform..

[18]  Rahul Singh,et al.  Global multiple protein-protein interaction network alignment by combining pairwise network alignments , 2015, BMC Bioinformatics.

[19]  Kimberly R. Kukurba,et al.  RNA Sequencing and Analysis. , 2015, Cold Spring Harbor protocols.

[20]  Andrey D. Prjibelski,et al.  Assembling short reads from jumping libraries with large insert sizes , 2015, Bioinform..

[21]  Evgeny M. Zdobnov,et al.  BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs , 2015, Bioinform..

[22]  S. Kelly,et al.  TransRate: reference-free quality assessment of de novo transcriptome assemblies , 2015, bioRxiv.

[23]  Steven L Salzberg,et al.  HISAT: a fast spliced aligner with low memory requirements , 2015, Nature Methods.

[24]  Han Zhao,et al.  Global network alignment in the context of aging , 2015, TCBB.

[25]  Kunihiko Sadakane,et al.  MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph , 2014, Bioinform..

[26]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[27]  Alexandre Lomsadze,et al.  Identification of protein coding regions in RNA transcripts , 2014, BCB.

[28]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[29]  Ole Schulz-Trieglaff,et al.  NxTrim: optimized trimming of Illumina mate pair reads , 2014, bioRxiv.

[30]  R. K. De,et al.  A Comprehensive View on Metabolic Pathway Analysis Methodologies , 2014 .

[31]  P. Pevzner,et al.  De novo protein sequencing by combining top-down and bottom-up tandem mass spectra. , 2014, Journal of proteome research.

[32]  Yongsheng Bai,et al.  Evaluation of de novo transcriptome assemblies from RNA-Seq data , 2014, Genome Biology.

[33]  Alla Lapidus,et al.  ExSPAnder: a universal repeat resolver for DNA fragment assembly , 2014, Bioinform..

[34]  Siu-Ming Yiu,et al.  IDBA-MTP: A Hybrid MetaTranscriptomic Assembler Based on Protein Information , 2014, RECOMB.

[35]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[36]  Andrés Marzal,et al.  Statistical Significance of Normalized Global Alignment , 2014, J. Comput. Biol..

[37]  Evan Bolton,et al.  Database resources of the National Center for Biotechnology Information , 2001, Nucleic Acids Res..

[38]  Susumu Goto,et al.  Data, information, knowledge and principle: back to metabolism in KEGG , 2013, Nucleic Acids Res..

[39]  Xun Xu,et al.  SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads , 2013, Bioinform..

[40]  C. H. Poskar,et al.  High-throughput data pipelines for metabolic flux analysis in plants. , 2014, Methods in molecular biology.

[41]  LC-MALDI-TOF/TOF for shotgun proteomics. , 2014, Methods in molecular biology.

[42]  Dmitry Antipov,et al.  Assembling Single-Cell Genomes and Mini-Metagenomes From Chimeric MDA Products , 2013, J. Comput. Biol..

[43]  M. Berriman,et al.  REAPR: a universal tool for genome assembly evaluation , 2013, Genome Biology.

[44]  Steven Salzberg,et al.  GAGE-B: an evaluation of genome assemblers for bacterial organisms , 2013, Bioinform..

[45]  Alexey A. Gurevich,et al.  QUAST: quality assessment tool for genome assemblies , 2013, Bioinform..

[46]  Inanç Birol,et al.  Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species , 2013, GigaScience.

[47]  Sean R. Eddy,et al.  Rfam 11.0: 10 years of RNA families , 2012, Nucleic Acids Res..

[48]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration , 2012, Briefings Bioinform..

[49]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[50]  Jian Wang,et al.  SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler , 2012, GigaScience.

[51]  Sara Sheehan,et al.  Telescoper: de novo assembly of highly repetitive regions , 2012, Bioinform..

[52]  Wei Li,et al.  RSeQC: quality control of RNA-seq experiments , 2012, Bioinform..

[53]  Bernard Henrissat,et al.  Metabolic Reconstruction for Metagenomic Data and Its Application to the Human Microbiome , 2012, PLoS Comput. Biol..

[54]  Siu-Ming Yiu,et al.  IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth , 2012, Bioinform..

[55]  M. Schatz,et al.  Hybrid error correction and de novo assembly of single-molecule sequencing reads , 2012, Nature Biotechnology.

[56]  Pablo Cingolani,et al.  © 2012 Landes Bioscience. Do not distribute. , 2022 .

[57]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[58]  R. Durbin,et al.  Efficient de novo assembly of large genomes using compressed data structures. , 2012, Genome research.

[59]  M. Schatz,et al.  Algorithms Gage: a Critical Evaluation of Genome Assemblies and Assembly Material Supplemental , 2008 .

[60]  Susumu Goto,et al.  KEGG for integration and interpretation of large-scale molecular data sets , 2011, Nucleic Acids Res..

[61]  Nuno A. Fonseca,et al.  Assemblathon 1: a competitive assessment of de novo short read assembly methods. , 2011, Genome research.

[62]  S. Salzberg,et al.  TopHat-Fusion: an algorithm for discovery of novel fusion transcripts , 2011, Genome Biology.

[63]  Bernard P. Puc,et al.  An integrated semiconductor device enabling non-optical genome sequencing , 2011, Nature.

[64]  N. Friedman,et al.  Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2011, Nature Biotechnology.

[65]  Gonçalo R. Abecasis,et al.  The variant call format and VCFtools , 2011, Bioinform..

[66]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[67]  Steven J. M. Jones,et al.  De novo assembly and analysis of RNA-seq data , 2010, Nature Methods.

[68]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[69]  Wendy S. Schackwitz,et al.  One Bacterial Cell, One Complete Genome , 2010, PloS one.

[70]  Paul D. Shaw,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2022 .

[71]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[72]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[73]  Steven J. M. Jones,et al.  Abyss: a Parallel Assembler for Short Read Sequence Data Material Supplemental Open Access , 2022 .

[74]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[75]  Lior Pachter,et al.  Sequence Analysis , 2020, Definitions.

[76]  Björn H. Junker,et al.  Computational Models of Metabolism: Stability and Regulation in Metabolic Networks , 2008 .

[77]  Steven M. Johnson,et al.  A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning. , 2008, Genome research.

[78]  Alejandro A. Schäffer,et al.  Database indexing for production MegaBLAST searches , 2008, Bioinform..

[79]  Alexander Souvorov,et al.  Splign: algorithms for computing spliced alignments with identification of paralogs , 2008, Biology Direct.

[80]  E. Birney,et al.  Velvet: algorithms for de novo short read assembly using de Bruijn graphs. , 2008, Genome research.

[81]  Yoshihiro Yamanishi,et al.  KEGG for linking genomes to life and the environment , 2007, Nucleic Acids Res..

[82]  Peter F. Hallin,et al.  RNAmmer: consistent and rapid annotation of ribosomal RNA genes , 2007, Nucleic acids research.

[83]  James R. Knight,et al.  Genome sequencing in microfabricated high-density picolitre reactors , 2005, Nature.

[84]  J. Shendure,et al.  Materials and Methods Som Text Figs. S1 and S2 Tables S1 to S4 References Accurate Multiplex Polony Sequencing of an Evolved Bacterial Genome , 2022 .

[85]  Thomas D. Wu,et al.  GMAP: a genomic mapping and alignment program for mRNA and EST sequence , 2005, Bioinform..

[86]  Eugene W. Myers,et al.  The fragment assembly string graph , 2005, ECCB/JBI.

[87]  J. Felsenstein Evolutionary trees from DNA sequences: A maximum likelihood approach , 2005, Journal of Molecular Evolution.

[88]  Volker Brendel,et al.  The ASRG database: identification and survey of Arabidopsis thaliana genes involved in pre-mRNA splicing , 2004, Genome Biology.

[89]  Yazhu Chen,et al.  A Brief Review of Computational Gene Prediction Methods , 2004, Genomics, proteomics & bioinformatics.

[90]  Gonzalo Navarro,et al.  An Alphabet-Friendly FM-Index , 2004, SPIRE.

[91]  Dong Xu,et al.  Protein Databases on the Internet , 2004, Current protocols in molecular biology.

[92]  Rajeev K. Azad,et al.  Probabilistic methods of identifying genes in prokaryotic genomes: Connections to the HMM theory , 2004, Briefings Bioinform..

[93]  Vladimir A. Kulyukin,et al.  Generalized Hamming Distance , 2002, Information Retrieval.

[94]  David L. Wheeler,et al.  GenBank: update , 2004, Nucleic Acids Res..

[95]  Inna Dubchak,et al.  Glocal alignment: finding rearrangements during alignment , 2003, ISMB.

[96]  H. Jörnvall,et al.  C‐Terminal Sequence Analysis , 2003, Current protocols in protein science.

[97]  S. Turner,et al.  Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations , 2003, Science.

[98]  Paul D. Shaw,et al.  Plant snoRNA database , 2003, Nucleic Acids Res..

[99]  Tom H. Pringle,et al.  The human genome browser at UCSC. , 2002, Genome research.

[100]  W. J. Kent,et al.  BLAT--the BLAST-like alignment tool. , 2002, Genome research.

[101]  P. Pevzner,et al.  An Eulerian path approach to DNA fragment assembly , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[102]  B. Chait,et al.  ProFound: an expert system for protein identification using mass spectrometric peptide mapping information. , 2000, Analytical chemistry.

[103]  Eugene W. Myers,et al.  A whole-genome assembly of Drosophila. , 2000, Science.

[104]  Rolf Apweiler,et al.  The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000 , 2000, Nucleic Acids Res..

[105]  D. N. Perkins,et al.  Probability‐based protein identification by searching sequence databases using mass spectrometry data , 1999, Electrophoresis.

[106]  S. Salzberg,et al.  Improved microbial gene identification with GLIMMER. , 1999, Nucleic acids research.

[107]  M. Borodovsky,et al.  GeneMark.hmm: new solutions for gene finding. , 1998, Nucleic acids research.

[108]  W. C. Barker,et al.  The PIR-International Protein Sequence Database. , 1998, Nucleic acids research.

[109]  S. Salzberg,et al.  Microbial gene identification using interpolated Markov models. , 1998, Nucleic acids research.

[110]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[111]  R F Doolittle,et al.  Progressive alignment of amino acid sequences and construction of phylogenetic trees from them. , 1996, Methods in enzymology.

[112]  R S Johnson,et al.  Sherpa: a Macintosh-based expert system for the interpretation of electrospray ionization LC/MS and MS/MS data from protein digests. , 1996, Rapid communications in mass spectrometry : RCM.

[113]  P. Pevzner,et al.  Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals , 1995, STOC '95.

[114]  Sudhir Kumar,et al.  MEGA: Molecular Evolutionary Genetics Analysis software for microcomputers , 1994, Comput. Appl. Biosci..

[115]  S. Henikoff,et al.  Amino acid substitution matrices from protein blocks. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[116]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[117]  O. Gotoh An improved algorithm for matching biological sequences. , 1982, Journal of molecular biology.

[118]  M S Waterman,et al.  Identification of common molecular subsequences. , 1981, Journal of molecular biology.

[119]  M. O. Dayhoff A model of evolutionary change in protein , 1978 .

[120]  H. Niall [36] Automated edman degradation: The protein sequenator , 1973 .

[121]  S. B. Needleman,et al.  A general method applicable to the search for similarities in the amino acid sequence of two proteins. , 1970, Journal of molecular biology.

[122]  F. Sanger,et al.  The disulphide bonds of insulin. , 1955, The Biochemical journal.

[123]  P. Edman,et al.  A method for the determination of amino acid sequence in peptides. , 1949, Archives of biochemistry.