Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis.

In this study, we investigated the sensitivity enhancement in nanowire-based surface plasmon resonance (SPR) biosensors using rigorous coupled wave analysis (RCWA). The enhancement, enabled by the excitation of localized surface plasmons in gold nanowires, offers improved performance in sensitivity as well as in reproducibility and customizability. Calculation results found that a T-profile provides higher sensitivity than an inverse T-profile in general and also determined optimum design parameters. Our study on a nanowire-enhanced SPR biosensor demonstrates the potential for significant improvement in the sensitivity through the nanowire-mediated localized SPR.

[1]  Lin He,et al.  Colloidal Au-Enhanced Surface Plasmon Resonance for Ultrasensitive Detection of DNA Hybridization , 2000 .

[2]  W. HICKEL,et al.  Surface-plasmon microscopy , 1989, Nature.

[3]  George C. Schatz,et al.  Electrodynamics of Noble Metal Nanoparticles and Nanoparticle Clusters , 1999 .

[4]  Christian Hafner,et al.  Multiple multipole method with automatic multipole setting applied to the simulation of surface plasmons in metallic nanostructures. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[5]  T. Gaylord,et al.  Diffraction analysis of dielectric surface-relief gratings , 1982 .

[6]  Gil U. Lee,et al.  A high-sensitivity micromachined biosensor , 1997, Proc. IEEE.

[7]  M. Natan,et al.  Colloidal Au-enhanced surface plasmon resonance immunosensing. , 1998, Analytical chemistry.

[8]  T. Chinowsky,et al.  Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films , 1998 .

[9]  S. Kawata,et al.  Optical chemical sensor based on surface plasmon measurement. , 1988, Applied optics.

[10]  J. Lermé Introduction of quantum finite-size effects in the Mie's theory for a multilayered metal sphere in the dipolar approximation: Application to free and matrix-embedded noble metal clusters , 2000 .

[11]  R. V. Van Duyne,et al.  A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. , 2002, Journal of the American Chemical Society.

[12]  F. Aussenegg,et al.  Optical dichroism of lithographically designed silver nanoparticle films. , 1996, Optics letters.

[13]  J. Kottmann,et al.  Retardation-induced plasmon resonances in coupled nanoparticles. , 2001, Optics letters.

[14]  Kazuhiro Hane,et al.  100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask , 2001 .

[15]  Bernhard Lamprecht,et al.  Optical properties of Ag and Au nanowire gratings , 2001 .

[16]  Thomas K. Gaylord,et al.  Rigorous coupled-wave analysis of metallic surface-relief gratings , 1986 .

[17]  Jihoon Park,et al.  Role of Substrate Metal in Gold Nanoparticle Enhanced Surface Plasmon Resonance Imaging , 2001 .

[18]  D. Hall,et al.  Use of optical biosensors for the study of mechanistically concerted surface adsorption processes. , 2001, Analytical biochemistry.

[19]  Suntak Park,et al.  Resonant coupling of surface plasmons to radiation modes by use of dielectric gratings. , 2003, Optics letters.

[20]  K. Lance Kelly,et al.  Chain Length Dependence and Sensing Capabilities of the Localized Surface Plasmon Resonance of Silver Nanoparticles Chemically Modified with Alkanethiol Self-Assembled Monolayers , 2001 .

[21]  B. Liedberg,et al.  Gas detection by means of surface plasmon resonance , 1982 .

[22]  Michael J. Natan,et al.  SURFACE PLASMON RESONANCE OF AU COLLOID-MODIFIED AU FILMS : PARTICLE SIZE DEPENDENCE , 1999 .

[23]  Donghyun Kim,et al.  Investigation of the sensitivity enhancement of nanoparticle-based surface plasmon resonance biosensors using rigorous coupled wave analysis , 2005, SPIE BiOS.

[24]  E. Palik Handbook of Optical Constants of Solids , 1997 .