Approximating cycles in a shortest basis of the first homology group from point data

Inference of topological and geometric attributes of a hidden manifold from its point data is a fundamental problem arising in many scientific studies and engineering applications. In this paper, we present an algorithm to compute a set of cycles from a point data that presumably sample a smooth manifold M ⊂ ℝ d . These cycles approximate a shortest basis of the first homology group H 1 (M) over coefficients in the finite field ℤ 2 . Previous results addressed the issue of computing the rank of the homology groups from point data, but there is no result on approximating the shortest basis of a manifold from its point sample. In arriving at our result, we also present a polynomial time algorithm for computing a shortest basis of H 1 (K) for any finite simplicial complex K whose edges have non-negative weights.

[1]  I. Holopainen Riemannian Geometry , 1927, Nature.

[2]  M. Bern,et al.  Surface Reconstruction by Voronoi Filtering , 1998, SCG '98.

[3]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[4]  Herbert Edelsbrunner,et al.  Topological persistence and simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[5]  I. Hassan Embedded , 2005, The Cyber Security Handbook.

[6]  K. Mischaikow,et al.  Computing Homology , 2001 .

[7]  I. Jolliffe Principal Component Analysis , 2002 .

[8]  Afra Zomorodian,et al.  Computing Persistent Homology , 2004, SCG '04.

[9]  Tamal K. Dey,et al.  Manifold reconstruction from point samples , 2005, SODA '05.

[10]  Jeff Erickson,et al.  Greedy optimal homotopy and homology generators , 2005, SODA '05.

[11]  David Cohen-Steiner,et al.  Stability of Persistence Diagrams , 2005, Discret. Comput. Geom..

[12]  David Cohen-Steiner,et al.  Vines and vineyards by updating persistence in linear time , 2006, SCG '06.

[13]  Frédéric Chazal,et al.  Topology guaranteeing manifold reconstruction using distance function to noisy data , 2006, SCG '06.

[14]  Jeff Erickson,et al.  Tightening non-simple paths and cycles on surfaces , 2006, SODA 2006.

[15]  Leonidas J. Guibas,et al.  Manifold Reconstruction in Arbitrary Dimensions Using Witness Complexes , 2007, SCG '07.

[16]  Stephen Smale,et al.  Finding the Homology of Submanifolds with High Confidence from Random Samples , 2008, Discret. Comput. Geom..

[17]  Steve Oudot,et al.  Towards persistence-based reconstruction in euclidean spaces , 2007, SCG '08.

[18]  Daniel Freedman,et al.  Measuring and Localizing Homology Classes , 2008 .

[19]  Mikhail Belkin,et al.  Discrete laplace operator on meshed surfaces , 2008, SCG '08.

[20]  Erin W. Chambers,et al.  Homology flows, cohomology cuts , 2009, STOC '09.

[21]  Tamal K. Dey,et al.  Cut locus and topology from surface point data , 2009, SCG '09.

[22]  Erin W. Chambers,et al.  Minimum cuts and shortest homologous cycles , 2009, SCG '09.

[23]  Matthew J. Sottile,et al.  Curve and surface reconstruction: algorithms with mathematical analysis by Tamal K. Dey Cambridge University Press , 2010, SIGA.

[24]  Chao Chen,et al.  Hardness Results for Homology Localization , 2010, SODA '10.

[25]  Chao Chen,et al.  An output-sensitive algorithm for persistent homology , 2011, SoCG '11.

[26]  Tamal K. Dey,et al.  Optimal Homologous Cycles, Total Unimodularity, and Linear Programming , 2011, SIAM J. Comput..

[27]  Primoz Skraba,et al.  Zigzag persistent homology in matrix multiplication time , 2011, SoCG '11.

[28]  R. Ho Algebraic Topology , 2022 .