Proteomic Profiling of the Dystrophin-Deficient MDX Heart Reveals Drastically Altered Levels of Key Metabolic and Contractile Proteins

Although Duchenne muscular dystrophy is primarily classified as a neuromuscular disease, cardiac complications play an important role in the course of this X-linked inherited disorder. The pathobiochemical steps causing a progressive decline in the dystrophic heart are not well understood. We therefore carried out a fluorescence difference in-gel electrophoretic analysis of 9-month-old dystrophin-deficient versus age-matched normal heart, using the established MDX mouse model of muscular dystrophy-related cardiomyopathy. Out of 2,509 detectable protein spots, 79 2D-spots showed a drastic differential expression pattern, with the concentration of 3 proteins being increased, including nucleoside diphosphate kinase and lamin-A/C, and of 26 protein species being decreased, including ATP synthase, fatty acid binding-protein, isocitrate dehydrogenase, NADH dehydrogenase, porin, peroxiredoxin, adenylate kinase, tropomyosin, actin, and myosin light chains. Hence, the lack of cardiac dystrophin appears to trigger a generally perturbed protein expression pattern in the MDX heart, affecting especially energy metabolism and contractile proteins.

[1]  B. Garcia,et al.  Proteomics , 2011, Journal of biomedicine & biotechnology.

[2]  K. Ohlendieck,et al.  Drastic increase of myosin light chain MLC-2 in senescent skeletal muscle indicates fast-to-slow fibre transition in sarcopenia of old age. , 2009, European journal of cell biology.

[3]  B. Chazotte Labeling mitochondria with fluorescent dyes for imaging. , 2009, Cold Spring Harbor protocols.

[4]  Pamela K. Mason,et al.  Lamin A/C deficiency as a cause of familial dilated cardiomyopathy , 2009, Current opinion in cardiology.

[5]  C. Hoppel,et al.  Mitochondria in the human heart , 2009, Journal of bioenergetics and biomembranes.

[6]  S. Wilton,et al.  Proteomic profiling of antisense‐induced exon skipping reveals reversal of pathobiochemical abnormalities in dystrophic mdx diaphragm , 2009, Proteomics.

[7]  E. Niggli,et al.  Pathways of abnormal stress-induced Ca2+ influx into dystrophic mdx cardiomyocytes. , 2009, Cell calcium.

[8]  G. Radda,et al.  Abnormal cardiac morphology, function and energy metabolism in the dystrophic mdx mouse: an MRI and MRS study. , 2008, Journal of molecular and cellular cardiology.

[9]  C. Hoppel,et al.  Proteomics of mitochondrial inner and outer membranes , 2008, Proteomics.

[10]  P. Iversen,et al.  Effective rescue of dystrophin improves cardiac function in dystrophin-deficient mice by a modified morpholino oligomer , 2008, Proceedings of the National Academy of Sciences.

[11]  J. D’hooge,et al.  Long-term blinded placebo-controlled study of SNT-MC17/idebenone in the dystrophin deficient mdx mouse: cardiac protection and improved exercise performance , 2008, European heart journal.

[12]  S. Eaton,et al.  The iron-sulfur cluster of electron transfer flavoprotein-ubiquinone oxidoreductase is the electron acceptor for electron transfer flavoprotein. , 2008, Biochemistry.

[13]  A. Messina,et al.  Structure of the voltage dependent anion channel: state of the art , 2008, Journal of bioenergetics and biomembranes.

[14]  M. Grounds,et al.  Towards developing standard operating procedures for pre-clinical testing in the mdx mouse model of Duchenne muscular dystrophy , 2008, Neurobiology of Disease.

[15]  S. Colan,et al.  Characteristics and outcomes of cardiomyopathy in children with Duchenne or Becker muscular dystrophy: a comparative study from the Pediatric Cardiomyopathy Registry. , 2008, American heart journal.

[16]  Melanie Y. White,et al.  Mitochondria: A mirror into cellular dysfunction in heart disease , 2008, Proteomics. Clinical applications.

[17]  M. Hecker,et al.  A proteome map of murine heart and skeletal muscle , 2008, Proteomics.

[18]  E. Hoffman,et al.  Dystrophin-deficient cardiomyopathy in mouse: Expression of Nox4 and Lox are associated with fibrosis and altered functional parameters in the heart , 2008, Neuromuscular Disorders.

[19]  K. Davies,et al.  A combined metabolomic and proteomic investigation of the effects of a failure to express dystrophin in the mouse heart. , 2008, Journal of proteome research.

[20]  M. Fayaz,et al.  Prevalence of cardiomyopathy in Duchenne and Becker's muscular dystrophy. , 2008, Journal of Ayub Medical College, Abbottabad : JAMC.

[21]  K. Ohlendieck,et al.  Proteomic profiling of animal models mimicking skeletal muscle disorders , 2007, Proteomics. Clinical applications.

[22]  J. Dyck,et al.  Metabolic and signaling alterations in dystrophin-deficient hearts precede overt cardiomyopathy. , 2007, Journal of molecular and cellular cardiology.

[23]  J. Ervasti Dystrophin, its interactions with other proteins, and implications for muscular dystrophy. , 2007, Biochimica et biophysica acta.

[24]  E. McNally New approaches in the therapy of cardiomyopathy in muscular dystrophy. , 2007, Annual review of medicine.

[25]  J. Metzger,et al.  Cardiomyopathy of Duchenne muscular dystrophy: pathogenesis and prospect of membrane sealants as a new therapeutic approach , 2007, Expert review of cardiovascular therapy.

[26]  M. Mann,et al.  In-gel digestion for mass spectrometric characterization of proteins and proteomes , 2006, Nature Protocols.

[27]  A. Fisher,et al.  Targeted disruption of peroxiredoxin 6 gene renders the heart vulnerable to ischemia-reperfusion injury. , 2006, American journal of physiology. Heart and circulatory physiology.

[28]  D. Duan Challenges and opportunities in dystrophin-deficient cardiomyopathy gene therapy. , 2006, Human molecular genetics.

[29]  M. Ünlü,et al.  Two-dimensional difference gel electrophoresis , 2006, Nature Protocols.

[30]  Marco Grzegorczyk,et al.  Statistics for Proteomics: A Review of Tools for Analyzing Experimental Data , 2006, Proteomics.

[31]  H. Jockusch,et al.  Proteome analysis of the dystrophin‐deficient MDX diaphragm reveals a drastic increase in the heat shock protein cvHSP , 2006, Proteomics.

[32]  David S. Rogers,et al.  Changes in the rat heart proteome induced by exercise training: Increased abundance of heat shock protein hsp20 , 2006, Proteomics.

[33]  K. Ohlendieck,et al.  Reduced expression of regucalcin in young and aged mdx diaphragm indicates abnormal cytosolic calcium handling in dystrophin-deficient muscle. , 2006, Biochimica et biophysica acta.

[34]  S. Winder,et al.  Sparks, signals and shock absorbers: how dystrophin loss causes muscular dystrophy. , 2006, Trends in cell biology.

[35]  M. Dunn,et al.  The human heart proteome: Two‐dimensional maps using narrow‐range immobilised pH gradients , 2006, Electrophoresis.

[36]  Kathryn S Lilley,et al.  Maximising sensitivity for detecting changes in protein expression: Experimental design using minimal CyDyes , 2005, Proteomics.

[37]  J. Tidball,et al.  Cardiomyopathy in dystrophin-deficient hearts is prevented by expression of a neuronal nitric oxide synthase transgene in the myocardium. , 2005, Human molecular genetics.

[38]  R. Marouga,et al.  The development of the DIGE system: 2D fluorescence difference gel analysis technology , 2005, Analytical and bioanalytical chemistry.

[39]  X. Qian,et al.  Proteomic analysis of mitochondrial proteins in cardiomyocytes from chronic stressed rat , 2004, Proteomics.

[40]  M. Poot,et al.  Efficacy of MitoTracker Green™ and CMXrosamine to measure changes in mitochondrial membrane potentials in living cells and tissues , 2004, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[41]  K. Ohlendieck,et al.  Subproteomics analysis of Ca2+‐binding proteins demonstrates decreased calsequestrin expression in dystrophic mouse skeletal muscle , 2004 .

[42]  B. Wong,et al.  Evolution of the mdx mouse cardiomyopathy: physiological and morphological findings , 2004, Neuromuscular Disorders.

[43]  K. Ohlendieck,et al.  Drastic reduction in the luminal Ca2+ -binding proteins calsequestrin and sarcalumenin in dystrophin-deficient cardiac muscle. , 2004, Biochimica et biophysica acta.

[44]  P. Andrews,et al.  Proteomic analysis of mdx skeletal muscle: Great reduction of adenylate kinase 1 expression and enzymatic activity , 2003, Proteomics.

[45]  F. Muntoni Cardiomyopathy in muscular dystrophies , 2003, Current opinion in neurology.

[46]  S. Harper,et al.  Microdystrophin Gene Therapy of Cardiomyopathy Restores Dystrophin-Glycoprotein Complex and Improves Sarcolemma Integrity in the Mdx Mouse Heart , 2003, Circulation.

[47]  L. Kunkel,et al.  Muscular dystrophies: genes to pathogenesis. , 2003, Current opinion in genetics & development.

[48]  D. Szczesna Regulatory light chains of striated muscle myosin. Structure, function and malfunction. , 2003, Current drug targets. Cardiovascular & haematological disorders.

[49]  J. Finsterer,et al.  The Heart in Human Dystrophinopathies , 2003, Cardiology.

[50]  J. Otero,et al.  Electrocardiographic findings in mdx mice: A cardiac phenotype of Duchenne muscular dystrophy , 2002, Muscle & nerve.

[51]  A. Nakamura,et al.  Progression of dystrophic features and activation of mitogen‐activated protein kinases and calcineurin by physical exercise, in hearts of mdx mice , 2002, FEBS letters.

[52]  H. Brunner Annual Review of Genomics and Human Genetics , 2001, European Journal of Human Genetics.

[53]  L. Kadaja,et al.  Lack of dystrophin is associated with altered integration of the mitochondria and ATPases in slow-twitch muscle cells of MDX mice. , 2001, Biochimica et biophysica acta.

[54]  T. Rabilloud,et al.  A comparison between Sypro Ruby and ruthenium II tris (bathophenanthroline disulfonate) as fluorescent stains for protein detection in gels , 2001, Proteomics.

[55]  E. Olson,et al.  Calsarcins, a novel family of sarcomeric calcineurin-binding proteins. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[56]  K. Campbell,et al.  Molecular basis of muscular dystrophies , 2000, Muscle & nerve.

[57]  M. Fukuda,et al.  Regulation of Cellular Functions by Nucleoside Diphosphate Kinases in Mammals , 2000, Journal of bioenergetics and biomembranes.

[58]  G. Radda,et al.  Decreased myocardial nNOS, increased iNOS and abnormal ECGs in mouse models of Duchenne muscular dystrophy. , 1999, Journal of molecular and cellular cardiology.

[59]  L. Kunkel,et al.  Dystrophies and heart disease. , 1997, Current opinion in cardiology.

[60]  M. Poot,et al.  Analysis of mitochondrial morphology and function with novel fixable fluorescent stains. , 1996, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[61]  J. Bobet,et al.  Contractile properties of myocardium are altered in dystrophin-deficient mdx mice , 1996, Journal of the Neurological Sciences.

[62]  J. Lefaucheur,et al.  Phenotype of dystrophinopathy in old MDX mice , 1995, The Anatomical record.

[63]  L. Kunkel,et al.  The structural and functional diversity of dystrophin , 1993, Nature Genetics.

[64]  E A Barnard,et al.  The molecular basis of muscular dystrophy in the mdx mouse: a point mutation. , 1989, Science.

[65]  S. Dimauro,et al.  Duchenne muscular dystrophy: Deficiency of dystrophin at the muscle cell surface , 1988, Cell.

[66]  Eric P. Hoffman,et al.  Dystrophin: The protein product of the duchenne muscular dystrophy locus , 1987, Cell.

[67]  M. Koenig,et al.  Complete cloning of the duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals , 1987, Cell.

[68]  L. Bridges The association of cardiac muscle necrosis and inflammation with the degenerative and persistent myopathy of MDX mice , 1986, Journal of the Neurological Sciences.

[69]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[70]  K. Ohlendieck,et al.  Opposite pathobiochemical fate of pyruvate kinase and adenylate kinase in aged rat skeletal muscle as revealed by proteomic DIGE analysis , 2008, Proteomics.

[71]  E. Khan,et al.  Antibiotic susceptibility of pathogens isolated from patients with community-acquired respiratory tract infections in Pakistan--the active study. , 2008, Journal of Ayub Medical College, Abbottabad : JAMC.

[72]  Bernard Dan,et al.  Pathophysiology of duchenne muscular dystrophy: current hypotheses. , 2007, Pediatric neurology.

[73]  M. Dunn,et al.  Proteomics of the Heart : Unraveling Disease , 2006 .

[74]  K. Ohlendieck,et al.  Deficiency in Cardiac Dystrophin Affects the Abundance of the α-/β-Dystroglycan Complex , 2005, Journal of biomedicine & biotechnology.

[75]  K. Ohlendieck,et al.  Subproteomics analysis of Ca+-binding proteins demonstrates decreased calsequestrin expression in dystrophic mouse skeletal muscle. , 2004, European journal of biochemistry.

[76]  J. Morley,et al.  Brain function in Duchenne muscular dystrophy. , 2002, Brain : a journal of neurology.

[77]  K. Ohlendieck,et al.  Towards an understanding of the dystrophin-glycoprotein complex: linkage between the extracellular matrix and the membrane cytoskeleton in muscle fibers. , 1996, European journal of cell biology.