WAVEWAT-improved solvent suppression in NMR spectra employing wavelet transforms.

WAVEWAT is a new processing algorithm to suppress the on-resonance water signal in NMR spectra. It is based on a multiresolution analysis (MRA) of the free induction decay (FID) using a dyadic discrete wavelet transform (DWT). The width of the suppressed signal can be adjusted so that signals close to water are recovered without distortion of the signal shape and intensity. Computational efficiency is comparable to that of convolution filters employing a Fourier transform.

[1]  S. Mallat Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .

[2]  Pierre Plateau,et al.  Exchangeable proton NMR without base-line distorsion, using new strong-pulse sequences , 1982 .

[3]  S. Mallat A wavelet tour of signal processing , 1998 .

[4]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[5]  M. Rance,et al.  Sensitivity-Enhanced NMR Techniques for the Study of Biomolecules , 1993 .

[6]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[7]  D. van Ormondt,et al.  SVD-based quantification of magnetic resonance signals , 1992 .

[8]  P. J. Hore,et al.  Solvent suppression in Fourier transform nuclear magnetic resonance , 1983 .

[9]  G. Wider,et al.  Suppression of the solvent resonance in 2D NMR spectra of proteins in H2O solution , 1983 .

[10]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[11]  Neil Gershenfeld,et al.  The nature of mathematical modeling , 1998 .

[12]  J. Antoine,et al.  Water peak suppression: time-frequency vs time-scale approach. , 2000, Journal of magnetic resonance.

[13]  Lotfi Senhadji,et al.  Time-Domain Quantification of Amplitude, Chemical Shift, Apparent Relaxation TimeT*2, and Phase by Wavelet-Transform Analysis. Application to Biomedical Magnetic Resonance Spectroscopy , 1997 .

[14]  Ludwig,et al.  NMRLAB-Advanced NMR data processing in matlab , 2000, Journal of magnetic resonance.

[15]  G. Wider,et al.  Solvent suppression using a spin lock in 2D and 3D NMR spectroscopy with H2O solutions , 1989 .

[16]  Keith J. Cross Improved Digital Filtering Technique for Solvent Suppression , 1993 .

[17]  G Zhu,et al.  Post-acquisition solvent suppression by singular-value decomposition. , 1997, Journal of magnetic resonance.

[18]  M. Levitt,et al.  Frequency-selective double-quantum-filtered COSY in water , 1989 .

[19]  V. Saudek,et al.  Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions , 1992, Journal of biomolecular NMR.

[20]  Ad Bax,et al.  Improved solvent suppression in one-and two-dimensional NMR spectra by convolution of time-domain data , 1989 .

[21]  A. Tsybakov,et al.  Wavelets, approximation, and statistical applications , 1998 .

[22]  Jean-Marie Dereppe,et al.  The continuous wavelet transform, an analysis tool for NMR spectroscopy , 1997 .

[23]  S Van Huffel,et al.  Accurate quantification of (1)H spectra: from finite impulse response filter design for solvent suppression to parameter estimation. , 1999, Journal of magnetic resonance.

[24]  C. J. Craven,et al.  The Action of Time-Domain Convolution Filters for Solvent Suppression , 1995 .