Enhanced Thermal Conductivity of Single-Walled Carbon Nanotube with Axial Tensile Strain Enabled by Boron Nitride Nanotube Anchoring.

Thermal conductivity measurements are conducted by optothermal Raman technique before and after the introduction of an axial tensile strain in a suspended single-walled carbon nanotube (SWCNT) through end-anchoring by boron nitride nanotubes (BNNTs). Surprisingly, the axial tensile strain (<0.4 %) in SWCNT results in a considerable enhancement of its thermal conductivity, and the larger the strain, the higher the enhancement. Furthermore, the thermal conductivity reduction with temperature is much alleviated for the strained nanotube compared to previously reported unstrained cases. The thermal conductivity of SWCNT increases with its length is also observed.

[1]  R. Xiang,et al.  Drastically Reduced Thermal Conductivity of Self-Bundled Single-Walled Carbon Nanotube , 2022, SSRN Electronic Journal.

[2]  H. Kataura,et al.  Fabricating one-dimensional van der Waals heterostructures on chirality-sorted single-walled carbon nanotubes , 2022, Carbon.

[3]  Satish Nagarajaiah,et al.  Next-generation 2D optical strain mapping with strain-sensing smart skin compared to digital image correlation , 2022, Scientific Reports.

[4]  V. Smirnov,et al.  Memristors based on strained multi-walled carbon nanotubes , 2022, Diamond and Related Materials.

[5]  E. Kauppinen,et al.  One-dimensional van der Waals heterostructures: Growth mechanism and handedness correlation revealed by nondestructive TEM , 2021, Proceedings of the National Academy of Sciences.

[6]  B. Liang,et al.  The split-up of G band and 2D band in temperature-dependent Raman spectra of suspended graphene , 2021, Optics & Laser Technology.

[7]  R. Xiang,et al.  Heteronanotubes: Challenges and Opportunities , 2021, Small Science.

[8]  A. Jorio,et al.  Raman spectroscopy for carbon nanotube applications , 2021 .

[9]  S. Rotkin,et al.  One-Dimensional van der Waals Heterojunction Diode. , 2020, ACS nano.

[10]  Y. Kawazoe,et al.  Low thermal conductivity of peanut-shaped carbon nanotube and its insensitive response to uniaxial strain , 2019, Nanotechnology.

[11]  J. Kong,et al.  One-dimensional van der Waals heterostructures , 2018, Science.

[12]  K. Jiang,et al.  Stressed carbon nanotube devices for high tunability, high quality factor, single mode GHz resonators , 2018, Nano Research.

[13]  Dali Cai,et al.  Carbon nanotube bundles with tensile strength over 80 GPa , 2018, Nature Nanotechnology.

[14]  R. Xiang,et al.  Quantitative study of bundle size effect on thermal conductivity of single-walled carbon nanotubes , 2018 .

[15]  Jerry Tersoff,et al.  Carbon nanotube transistors scaled to a 40-nanometer footprint , 2017, Science.

[16]  Lianmao Peng,et al.  Scaling carbon nanotube complementary transistors to 5-nm gate lengths , 2017, Science.

[17]  Duckjong Kim,et al.  Ultrahigh Thermal Conductivity of Interface Materials by Silver‐Functionalized Carbon Nanotube Phonon Conduits , 2016, Advanced materials.

[18]  Satish Nagarajaiah,et al.  Carbon nanotubes as non-contact optical strain sensors in smart skins , 2015 .

[19]  P. Ajayan,et al.  High thermal conductivity of suspended few-layer hexagonal boron nitride sheets , 2014, Nano Research.

[20]  S. Louie,et al.  Systematic determination of absolute absorption cross-section of individual carbon nanotubes , 2013, Proceedings of the National Academy of Sciences.

[21]  Kenji Watanabe,et al.  Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride. , 2013, Nano letters.

[22]  P. Lambin,et al.  Theoretical polarization dependence of the two-phonon double-resonant Raman spectra of graphene , 2012, 1206.3827.

[23]  G. Jin,et al.  Stretching-enhanced ballistic thermal conductance in graphene nanoribbons , 2011 .

[24]  S. Cronin,et al.  Direct observation of heat dissipation in individual suspended carbon nanotubes using a two-laser technique , 2011 .

[25]  L. Kavan,et al.  Raman 2D-band splitting in graphene: theory and experiment. , 2011, ACS nano.

[26]  Carl W. Magnuson,et al.  Raman measurements of thermal transport in suspended monolayer graphene of variable sizes in vacuum and gaseous environments. , 2011, ACS nano.

[27]  S. Cronin,et al.  The effect of gas environment on electrical heating in suspended carbon nanotubes , 2010 .

[28]  Chia-Chi Chang,et al.  A new lower limit for the ultimate breaking strain of carbon nanotubes. , 2010, ACS nano.

[29]  A. Jorio,et al.  Resonance Raman spectroscopy of the radial breathing modes in carbon nanotubes , 2010 .

[30]  Li Shi,et al.  Thermal and Structural Characterizations of Individual Single‐, Double‐, and Multi‐Walled Carbon Nanotubes , 2009 .

[31]  Xingao Gong,et al.  Thermal conductivity of graphene nanoribbons , 2009 .

[32]  M. Buehler,et al.  Strain controlled thermomutability of single-walled carbon nanotubes , 2009, Nanotechnology.

[33]  S. Cronin,et al.  Optical absorption and thermal transport of individual suspended carbon nanotube bundles. , 2009, Nano letters.

[34]  Zhongfan Liu,et al.  Chirality-Dependent Raman Frequency Variation of Single-Walled Carbon Nanotubes under Uniaxial Strain , 2008 .

[35]  M. Fuhrer,et al.  Optical measurement of thermal transport in suspended carbon nanotubes , 2008 .

[36]  Zhongfan Liu,et al.  Temperature Coefficients of Raman Frequency of Individual Single-Walled Carbon Nanotubes , 2007 .

[37]  C. N. Lau,et al.  Temperature dependence of the Raman spectra of graphene and graphene multilayers. , 2007, Nano letters.

[38]  Jun Xu,et al.  Enhancement of thermal interface materials with carbon nanotube arrays , 2006 .

[39]  E. Pop,et al.  Thermal conductance of an individual single-wall carbon nanotube above room temperature. , 2005, Nano letters.

[40]  A. Majumdar,et al.  Thermal conductance and thermopower of an individual single-wall carbon nanotube. , 2005, Nano letters.

[41]  Riichiro Saito,et al.  Raman spectroscopy of carbon nanotubes , 2005 .

[42]  S. Maruyama A MOLECULAR DYNAMICS SIMULATION OF HEAT CONDUCTION OF A FINITE LENGTH SINGLE-WALLED CARBON NANOTUBE , 2003 .

[43]  Baoxing Xu,et al.  Unusual thermal conductivity behavior of serpentine graphene nanoribbons under tensile strain , 2016 .