Efficient harmonic generation with a broad-band laser

Harmonic generation using a broadband input beam is studied theoretically and experimentally. Angular spectral dispersion is imposed on the input beam to improve the phase matching and thereby increase the conversion efficiency. The coupled amplitude equations are derived for a grating-dispersed input beam, and it is shown that, in the parameter range of interest, a simple theoretical model based on the intuitive concept of instantaneous frequency suffices to describe the nonlinear interaction. A laser having a frequency-chirped output with a 25-AA bandwidth is used to demonstrate the technique for third-harmonic generation in the small-signal regime. >

[1]  Robert C. Eckardt,et al.  Phase matching limitations of high efficiency second harmonic generation , 1984 .

[2]  V. L. Strizhevskiǐ,et al.  ARTICLES: Method for compensating the phase-matching dispersion in nonlinear optics , 1975 .

[3]  V D Volosov,et al.  Compensation of phase-matching dispersion in generation of nonmonochromatic radiation harmonics. I. Doubling of neodymium-glass radiation frequency under free-oscillation conditions , 1976 .

[4]  Wang,et al.  Efficient conversion of picosecond laser pulses into second-harmonic frequency using group-velocity dispersion. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[5]  Stephen D. Jacobs,et al.  Basic properties of KDP related to the frequency conversion of 1 µm laser radiation , 1981 .

[6]  Gerard Mourou,et al.  Generation of ultrahigh peak power pulses by chirped pulse amplification , 1988 .

[7]  S. Skupsky,et al.  Frequency conversion of broad-bandwidth laser light , 1990 .

[8]  宅間 宏,et al.  Amnon Yariv: Quantum Electronics, John Wiley and Sons, Inc., New York, 1967, 478頁, 16×24cm, 5,980円. , 1968 .

[9]  Daniel R. Grischkowsky,et al.  Optical pulse compression based on enhanced frequency chirping , 1982 .

[10]  S. P. Obenschain,et al.  Efficient second harmonic conversion of broad-band high-peak-power Nd:glass laser radiation using large-aperture KDP crystals in quadrature , 1990 .

[11]  Oscar E. Martínez,et al.  Achromatic phase matching for second harmonic generation of femtosecond pulses , 1989 .

[12]  J. Krasiński,et al.  An improved automatically tunable second harmonic generation of dye laser , 1978 .

[13]  Gábor Szabó,et al.  Broadband frequency doubler for femtosecond pulses , 1990 .

[14]  N. Bloembergen,et al.  Interactions between light waves in a nonlinear dielectric , 1962 .

[15]  Andrew J. Schmitt,et al.  Theory of induced spatial incoherence , 1987 .

[16]  C. Peters,et al.  Generation of optical harmonics , 1961 .

[17]  S. Jacobs,et al.  Demonstration of high efficiency third harmonic conversion of high power Nd-glass laser radiation , 1980 .

[18]  Partha P Banerjee,et al.  Principles of Nonlinear Optics , 1989 .

[19]  Samuel A. Letzring,et al.  Improved laser‐beam uniformity using the angular dispersion of frequency‐modulated light , 1989 .

[20]  R. S. Craxton,et al.  High efficiency frequency tripling schemes for high-power Nd: Glass lasers , 1981 .