Multiparticle amplitudes at one-loop: an algebraic/numeric approach

[1]  E. Glover,et al.  A Calculational Formalism for One-Loop Integrals , 2004, hep-ph/0402152.

[2]  D. Soper,et al.  General subtraction method for numerical calculation of one-loop QCD matrix elements , 2003, hep-ph/0308127.

[3]  Z. Trocsanyi,et al.  QCD radiative corrections to prompt diphoton production in association with a jet at hadron colliders , 2003, hep-ph/0303012.

[4]  T. Binoth Progress in calculating hexagon amplitudes at one-loop , 2002, hep-ph/0211125.

[5]  N. Kauer SINGINT: Automatic numerical integration of singular integrands , 2002, physics/0210127.

[6]  N. Kauer,et al.  A numerical evaluation of the scalar hexagon integral in the physical region , 2002, hep-ph/0210023.

[7]  G. Passarino,et al.  All-purpose numerical evaluation of one-loop multi-leg Feynman diagrams , 2002, hep-ph/0209219.

[8]  Z. Trocsanyi,et al.  The Dipole Formalism for Next-to-Leading Order QCD Calculations with Massive Partons , 2002, hep-ph/0201036.

[9]  C. Schubert,et al.  Calculation of 1-loop hexagon amplitudes in the Yukawa model , 2001, hep-ph/0106243.

[10]  J. Guillet,et al.  Reduction formalism for dimensionally regulated one loop N point integrals , 1999, hep-ph/9911342.

[11]  Z. Kunszt,et al.  Two photons plus jet at LHC: the NNLO contribution from the gg initiated process 1 Work partly suppo , 1999, hep-ph/9905283.

[12]  L. Dixon,et al.  Dimensionally-regulated pentagon integrals☆ , 1993, hep-ph/9306240.

[13]  L. Dixon,et al.  One-loop corrections to five-gluon amplitudes. , 1993, Physical review letters.