Multiparticle amplitudes at one-loop: an algebraic/numeric approach
暂无分享,去创建一个
[1] E. Glover,et al. A Calculational Formalism for One-Loop Integrals , 2004, hep-ph/0402152.
[2] D. Soper,et al. General subtraction method for numerical calculation of one-loop QCD matrix elements , 2003, hep-ph/0308127.
[3] Z. Trocsanyi,et al. QCD radiative corrections to prompt diphoton production in association with a jet at hadron colliders , 2003, hep-ph/0303012.
[4] T. Binoth. Progress in calculating hexagon amplitudes at one-loop , 2002, hep-ph/0211125.
[5] N. Kauer. SINGINT: Automatic numerical integration of singular integrands , 2002, physics/0210127.
[6] N. Kauer,et al. A numerical evaluation of the scalar hexagon integral in the physical region , 2002, hep-ph/0210023.
[7] G. Passarino,et al. All-purpose numerical evaluation of one-loop multi-leg Feynman diagrams , 2002, hep-ph/0209219.
[8] Z. Trocsanyi,et al. The Dipole Formalism for Next-to-Leading Order QCD Calculations with Massive Partons , 2002, hep-ph/0201036.
[9] C. Schubert,et al. Calculation of 1-loop hexagon amplitudes in the Yukawa model , 2001, hep-ph/0106243.
[10] J. Guillet,et al. Reduction formalism for dimensionally regulated one loop N point integrals , 1999, hep-ph/9911342.
[11] Z. Kunszt,et al. Two photons plus jet at LHC: the NNLO contribution from the gg initiated process 1 Work partly suppo , 1999, hep-ph/9905283.
[12] L. Dixon,et al. Dimensionally-regulated pentagon integrals☆ , 1993, hep-ph/9306240.
[13] L. Dixon,et al. One-loop corrections to five-gluon amplitudes. , 1993, Physical review letters.