Germination of Pyrodinium bahamense Cysts from a Pristine Lagoon in San José Island, Gulf of California: Implications of Long-Term Survival

The production of cysts by dinoflagellates can be part of the life cycle of some species, improving their survival under adverse environmental conditions; cyst germination may explain the recurrence of algal blooms in some cases. In order to evaluate the germination rates of Pyrodinium bahamense, its cysts were retrieved from surface sediments collected in San José Lagoon, SW Gulf of California, and germination assays were carried out through the cysts incubation under two contrasting light and nutrient concentration conditions. Also, to evaluate cysts viability, we isolated P. bahamense cysts and other dinoflagellate species from different depth layers of a 210Pb-dated sediment core (~100 years) to examine their germination for 20 days. Germination rates were higher under light (28–56%) than in darkness (23–34%); there were indications that the nutrient-enriched media was more effective in promoting germination than seawater. Furthermore, germination was observed in cysts isolated from all selected core depths, even those corresponding to ~100 years. These results demonstrate that cysts remain viable for long periods, and P. bahamense cysts germinate in any light and nutrient conditions. The results of this research provide relevant information to understand its physiology and complex population dynamics. This species should be closely monitored in the area in the context of climate change, as current natural conditions are likely to change.

[1]  J. Sanchez-Cabeza,et al.  Rapid surface water warming and impact of the recent (2013 – 2016) temperature anomaly in shallow coastal waters at the eastern entrance of the Gulf of California , 2022, Progress in Oceanography.

[2]  Castañeda Quezada Rigel,et al.  Assemblages of dinoflagellate resistance cysts and copepod eggs in superficial sediments at the upper Gulf of California , 2022, Continental Shelf Research.

[3]  Dongyan Liu,et al.  Exploration of resting cysts (stages) and their relevance for possibly HABs-causing species in China. , 2021, Harmful algae.

[4]  F. Sangiorgi,et al.  Dinoflagellate cyst distribution in surface sediments of Ambon Bay (eastern Indonesia): Environmental conditions and harmful blooms. , 2021, Marine pollution bulletin.

[5]  P. Martínez-Austria,et al.  Climate Change and Extreme Temperature Trends in the Baja California Peninsula, Mexico , 2021, Air, Soil and Water Research.

[6]  C. Kuenzer,et al.  Anthropogenic, Direct Pressures on Coastal Wetlands , 2020, Frontiers in Ecology and Evolution.

[7]  S. Schmidt,et al.  Revival of ancient marine dinoflagellates using molecular biostimulatio. , 2020, Journal of phycology.

[8]  Stephanie K. Moore,et al.  Cyst-forming dinoflagellates in a warming climate. , 2020, Harmful algae.

[9]  Susan Murasko,et al.  Temperature mediates secondary dormancy in resting cysts of Pyrodinium bahamense (Dinophyceae) , 2019, Journal of phycology.

[10]  V. Johnson Evidence From Marginally Significant t Statistics , 2019, The American statistician.

[11]  L. Morquecho Pyrodinium bahamense One the Most Significant Harmful Dinoflagellate in Mexico , 2019, Front. Mar. Sci..

[12]  N. Torrescano-Valle The Holocene and Anthropocene Environmental History of Mexico: A Paleoecological Approach on Mesoamerica , 2019 .

[13]  E. Martínez‐Meyer,et al.  One hundred years of climate change in Mexico , 2018, bioRxiv.

[14]  D. Anderson,et al.  Quantitative Response of Alexandrium catenella Cyst Dormancy to Cold Exposure. , 2018, Protist.

[15]  M. Henry,et al.  Environmental forcing on the flux of organic-walled dinoflagellate cysts in recent sediments from a subtropical lagoon in the Gulf of California. , 2018, The Science of the total environment.

[16]  A. Kremp,et al.  Patterns of vertical cyst distribution and survival in 100-year-old sediment archives of three spring dinoflagellate species from the Northern Baltic Sea , 2018 .

[17]  M. Ellegaard,et al.  Time capsules in natural sediment archives—Tracking phytoplankton population genetic diversity and adaptation over multidecadal timescales in the face of environmental change , 2017, Evolutionary applications.

[18]  J. Sanchez-Cabeza,et al.  Sedimentary record of recent climate impacts on an insular coastal lagoon in the Gulf of California , 2017 .

[19]  A. Yamaguchi,et al.  The physiological adaptations and toxin profiles of the toxic Alexandrium fundyense on the eastern Bering Sea and Chukchi Sea shelves. , 2017, Harmful algae.

[20]  J. Sanchez-Cabeza,et al.  Chronology of recent sedimentation and geochemical characteristics of sediments in Alvarado Lagoon, Veracruz (southwestern gulf of Mexico) , 2014 .

[21]  J. Sanchez-Cabeza,et al.  Monte Carlo uncertainty calculation of 210Pb chronologies and accumulation rates of sediments and peat bogs , 2014 .

[22]  R. Alonso-Rodríguez,et al.  Cyst morphology, germination characteristics, and potential toxicity of Pyrodinium bahamense in the Gulf of California , 2014 .

[23]  R. Azanza,et al.  Development, morphological characteristics and viability of temporary cysts of Pyrodinium bahamense var. compressum (Dinophyceae) in vitro , 2014 .

[24]  C. Sherwood,et al.  Investigating the importance of sediment resuspension in Alexandrium fundyense cyst population dynamics in the Gulf of Maine. , 2014, Deep-sea research. Part II, Topical studies in oceanography.

[25]  D. Anderson,et al.  Alexandrium fundyense cyst viability and germling survival in light vs. dark at a constant low temperature. , 2014, Deep-sea research. Part II, Topical studies in oceanography.

[26]  J. Arreola-Lizárraga,et al.  Factors associated with moderate blooms of Pyrodinium bahamense in shallow and restricted subtropical lagoons in the Gulf of California , 2012 .

[27]  J. Sanchez-Cabeza,et al.  210Pb sediment radiochronology: An integrated formulation and classification of dating models , 2012 .

[28]  S. Nagai,et al.  Viability of Alexandrium tamarense cysts in the sediment of Funka Bay, Hokkaido, Japan: Over a hundred year survival times for cysts , 2012 .

[29]  S. Álvarez-Borrego Phytoplankton biomass and production in the Gulf of California: a review , 2012 .

[30]  E. Martínez-Hernández DISTRIBUCIÓN DE QUISTES DE DINOFLAGELADOS Y ACRITARCAS EN SEDIMENTOS HOLOCÉNICOS DEL GOLFO DE CALIFORNIA , 2011 .

[31]  M. Ellegaard,et al.  Buried alive – germination of up to a century-old marine protist resting stages , 2011 .

[32]  M. Ellegaard,et al.  Phytoplankton growth after a century of dormancy illuminates past resilience to catastrophic darkness , 2011, Nature communications.

[33]  I. Gárate-Lizárraga,et al.  Occurrence of Pyrodinium bahamense var. compressum along the southern coast of the Baja California Peninsula. , 2011, Marine pollution bulletin.

[34]  S. Lluch-Cota,et al.  Changing climate in the Gulf of California , 2010 .

[35]  A. Kobiyama,et al.  Growth and toxin production of tropical Alexandrium minutum Halim (Dinophyceae) under various nitrogen to phosphorus ratios , 2010, Journal of Applied Phycology.

[36]  A. Vaquer,et al.  Dormancy and germination features in resting cysts of Alexandrium tamarense species complex (Dinophyceae) can facilitate bloom formation in a shallow lagoon (Thau, southern France) , 2009 .

[37]  A. Carreño,et al.  Middle to late Miocene chronostratigraphy and development of the northern Gulf of California , 2009 .

[38]  J. Aldridge,et al.  The germination characteristics of Alexandrium minutum (Dinophyceae), a toxic dinoflagellate from the Fal estuary (UK) , 2009 .

[39]  C. Hillaire‐Marcel,et al.  210Pb-derived ages for the reconstruction of terrestrial contaminant history into the Mexican Pacific coast: potential and limitations. , 2009, Marine pollution bulletin.

[40]  Lora E Fleming,et al.  Impacts of climate variability and future climate change on harmful algal blooms and human health , 2008, Environmental health : a global access science source.

[41]  L. Morquecho Morphology of Pyrodinium bahamense Plate (Dinoflagellata) near Isla San José, Gulf of California, Mexico , 2008 .

[42]  I. Jenkinson,et al.  Encystment and excystment of Gyrodinium instriatum Freudenthal et Lee , 2008 .

[43]  Per O.J. Hall,et al.  Fluxes of iron and manganese across the sediment-water interface under various redox conditions , 2007 .

[44]  D. Hernández-Becerril,et al.  Toxic and harmful marine phytoplankton and microalgae (HABs) in Mexican Coasts , 2007, Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering.

[45]  Soon-Jin Hwang,et al.  Excystment patterns of the freshwater dinoflagellate Peridinium bipes (Dinophyceae) in Juam Reservoir, Korea , 2007 .

[46]  D. Escobedo-Urías,et al.  First Record of Vegetative Cells of Pyrodinium bahamense (Gonyaulacales: Goniodomataceae) in the Gulf of California1 , 2007 .

[47]  Z. Amzil,et al.  Viability, growth and toxicity of Alexandrium catenella and Alexandrium minutum (Dinophyceae) following ingestion and gut passage in the oyster Crassostrea gigas , 2007 .

[48]  R. Azanza,et al.  Attempts to model the bloom dynamics of Pyrodinium, a tropical toxic dinoflagellate , 2006 .

[49]  A. Vaquer,et al.  The benthic resting cyst : A key actor in harmful dinoflagellate blooms -A review , 2006 .

[50]  I. Bravo,et al.  Effects of nutritional factors and different parental crosses on the encystment and excystment of Alexandrium catenella (Dinophyceae) in culture , 2005 .

[51]  M. D. Keller,et al.  Circannual excystment of resting cysts of Alexandrium spp. from eastern Gulf of Maine populations , 2005 .

[52]  Donald M. Anderson,et al.  Alexandrium fundyense cyst dynamics in the Gulf of Maine , 2005 .

[53]  S. Álvarez-Borrego,et al.  Total and new production in the Gulf of California estimated from ocean color data from the satellite sensor SeaWIFS , 2004 .

[54]  R. Azanza,et al.  Application of 210Pb-derived sedimentation rates and dinoflagellate cyst analyses in understanding Pyrodinium bahamense harmful algal blooms in Manila Bay and Malampaya Sound, Philippines. , 2004, Journal of environmental radioactivity.

[55]  K. Matsuoka,et al.  Modern dinoflagellate cysts in hypertrophic coastal waters of Tokyo Bay, Japan , 2003 .

[56]  M. Montresor,et al.  Viability of dinoflagellate cysts after the passage through the copepod gut , 2003 .

[57]  D. Kulis,et al.  Culture Studies of Alexandrium affine (Dinophyceae), a Non-Toxic Cyst Forming Dinoflagellate from Bahía Concepción, Gulf of California , 2003 .

[58]  A. Kremp Effects of cyst resuspension on germination and seeding of two bloom-forming dinoflagellates in the Baltic Sea , 2001 .

[59]  G. Bernal,et al.  Variabilidad oceanográfica y climática en el bajo golfo de california: influencias del trópico y pacífico norte , 2001 .

[60]  R. Thunell,et al.  Oceanographic considerations for the application of the alkenone-based paleotemperature U , 2001 .

[61]  D. Anderson,et al.  Factors regulating germination of resting cysts of the spring bloom dinoflagellate Scrippsiella hangoei from the northern Baltic Sea , 2000 .

[62]  M. Montresor,et al.  Different excystment patterns in two calcareous cyst-producing species of the dinoflagellate genus Scrippsiella , 1999 .

[63]  D. Anderson,et al.  CONTROL OF GERMINATION OF ALEXANDRIUM TAMARENSE (DINOPHYCEAE) CYSTS FROM THE LOWER ST. LAWRENCE ESTUARY (CANADA) , 1998 .

[64]  G. Usup,et al.  Growth and toxin production of the toxic dinoflagellate Pyrodinium bahamense var. compressum in laboratory cultures. , 1994, Natural toxins.

[65]  Donald M. Anderson,et al.  The effects of temperature, growth medium and darkness on excystment and growth of the toxic dinoflagellate Gymnodinium catenatum from northwest Spain , 1994 .

[66]  J. Blanco Cyst germination of two dinoflagellate species from Galicia (NW Spain) , 1990 .

[67]  D. Anderson,et al.  PHYSIOLOGICAL AND ENVIRONMENTAL CONTROL OF GERMINATION IN SCRIPPSIELLA TROCHOIDEA (DINOPHYCEAE) RESTING CYSTS 1 , 1987 .

[68]  E. Virginia Armbrust,et al.  The effects of darkness and anaerobiosis on dinoflagellate cyst germination1,2 , 1987 .

[69]  D. M. Andersen,et al.  An endogenous annual clock in the toxic marine dinoflagellate Gonyaulax tamarensis , 1987, Nature.

[70]  B. Dale,et al.  THE “HYSTRICHOSPHAERID” RESTING SPORE OF THE DINOFLAGELLATE PYRODINIUM BAHAMENSE, PLATF, 1906 2 , 1969, Journal of phycology.

[71]  R. Guillard,et al.  Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. , 1962, Canadian journal of microbiology.