Perovskite Solar Cells: From the Laboratory to the Assembly Line.

Despite the fact that perovskite solar cells (PSCs) have a strong potential as a next-generation photovoltaic technology due to continuous efficiency improvements and the tunable properties, some important obstacles remain before industrialization is feasible. For example, the selection of low-cost or easy-to-prepare materials is essential for back-contacts and hole-transporting layers. Likewise, the choice of conductive substrates, the identification of large-scale manufacturing techniques as well as the development of appropriate aging protocols are key objectives currently under investigation by the international scientific community. This Review analyses the above aspects and highlights the critical points that currently limit the industrial production of PSCs and what strategies are emerging to make these solar cells the leaders in the photovoltaic field.

[1]  Xiujian Zhao,et al.  Enhance photovoltaic performance of tris(2,2′-bipyridine) cobalt(II)/(III) based dye-sensitized solar cells via modifying TiO2 surface with metal-organic frameworks , 2017 .

[2]  Lei Lei,et al.  Controllable deposition of TiO2 nanopillars at room temperature for high performance perovskite solar cells with suppressed hysteresis , 2017 .

[3]  Gong Gu,et al.  High-Performance Flexible Perovskite Solar Cells by Using a Combination of Ultrasonic Spray-Coating and Low Thermal Budget Photonic Curing , 2015 .

[4]  M. Roeffaers,et al.  Direct Laser Writing of δ- to α-Phase Transformation in Formamidinium Lead Iodide , 2017, ACS nano.

[5]  Jianbin Xu,et al.  Integration of inverse nanocone array based bismuth vanadate photoanodes and bandgap-tunable perovskite solar cells for efficient self-powered solar water splitting , 2017 .

[6]  Ying Shirley Meng,et al.  Role of 4-tert-Butylpyridine as a Hole Transport Layer Morphological Controller in Perovskite Solar Cells. , 2016, Nano letters.

[7]  S. Zakeeruddin,et al.  Enhancing Efficiency of Perovskite Solar Cells via N‐doped Graphene: Crystal Modification and Surface Passivation , 2016, Advanced materials.

[8]  A. Jen,et al.  Tailor-Making Low-Cost Spiro[fluorene-9,9′-xanthene]-Based 3D Oligomers for Perovskite Solar Cells , 2017 .

[9]  Federico Bella,et al.  Light-cured polymer electrolytes for safe, low-cost and sustainable sodium-ion batteries , 2017 .

[10]  Federico Bella,et al.  A simple route toward next-gen green energy storage concept by nanofibres-based self-supporting electrodes and a solid polymeric design , 2016 .

[11]  Mohammad Khaja Nazeeruddin,et al.  Methoxydiphenylamin-substituiertes Carbazol-Zwillingsderivat: ein effizienter organischer Lochleiter für Perowskit-Solarzellen† , 2015 .

[12]  Licheng Sun,et al.  High-Performance Regular Perovskite Solar Cells Employing Low-Cost Poly(ethylenedioxythiophene) as a Hole-Transporting Material , 2017, Scientific reports.

[13]  Fei Wu,et al.  Molecular engineering to enhance perovskite solar cell performance: Incorporation of benzothiadiazole as core unit for low cost hole transport materials , 2017 .

[14]  Junjie Ma,et al.  Highly Efficient and Stable Planar Perovskite Solar Cells With Large‐Scale Manufacture of E‐Beam Evaporated SnO2 Toward Commercialization , 2017 .

[15]  Xudong Yang,et al.  A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules , 2017, Nature.

[16]  Ziv Hameiri,et al.  Photovoltaics Literature Survey (No. 132) , 2017 .

[17]  Suren A. Gevorgyan,et al.  Using ISOS consensus test protocols for development of quantitative life test models in ageing of organic solar cells , 2017 .

[18]  Seong Sik Shin,et al.  Tailoring of Electron-Collecting Oxide Nanoparticulate Layer for Flexible Perovskite Solar Cells. , 2016, The journal of physical chemistry letters.

[19]  Zhibin Yang,et al.  High‐Performance Fully Printable Perovskite Solar Cells via Blade‐Coating Technique under the Ambient Condition , 2015 .

[20]  B. Hamilton,et al.  Reducing hole transporter use and increasing perovskite solar cell stability with dual-role polystyrene microgel particles. , 2017, Nanoscale.

[21]  Tae‐Woo Lee,et al.  Planar heterojunction organometal halide perovskite solar cells: roles of interfacial layers , 2016 .

[22]  Henry J Snaith,et al.  Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates , 2013, Nature Communications.

[23]  G. Boschloo,et al.  Carbon nanotube-based hybrid hole-transporting material and selective contact for high efficiency perovskite solar cells , 2016 .

[24]  Xiao-Jie Wu,et al.  Investigation of organic–inorganic hybrid perovskite solar cells based on Al2O3 nanorods , 2017 .

[25]  Nam-Gyu Park,et al.  Perovskite solar cells: an emerging photovoltaic technology , 2015 .

[26]  Michael Grätzel,et al.  The rapid evolution of highly efficient perovskite solar cells , 2017 .

[27]  H. Snaith,et al.  Dopant-Free Planar n–i–p Perovskite Solar Cells with Steady-State Efficiencies Exceeding 18% , 2017 .

[28]  M. M. Byranvand,et al.  Simple post annealing-free method for fabricating uniform, large grain-sized, and highly crystalline perovskite films , 2017 .

[29]  G. Boschloo,et al.  High Temperature‐Stable Perovskite Solar Cell Based on Low‐Cost Carbon Nanotube Hole Contact , 2017, Advanced materials.

[30]  Y. Qi,et al.  Progress on Perovskite Materials and Solar Cells with Mixed Cations and Halide Anions. , 2017, ACS applied materials & interfaces.

[31]  Meng-Che Tsai,et al.  Organometal halide perovskite solar cells: degradation and stability , 2016 .

[32]  Xiao Tan,et al.  Electrochemistry and Electrochemiluminescence of Organometal Halide Perovskite Nanocrystals in Aqueous Medium. , 2017, Journal of the American Chemical Society.

[33]  C. Ni,et al.  Recent progress in stabilizing hybrid perovskites for solar cell applications , 2017 .

[34]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[35]  Tymish Y. Ohulchanskyy,et al.  A core-multiple shell nanostructure enabling concurrent upconversion and quantum cutting for photon management. , 2017, Nanoscale.

[36]  Tomas Leijtens,et al.  Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. , 2014, Nano letters.

[37]  K. Alameh,et al.  Efficient perovskite solar cell fabricated in ambient air using one-step spin-coating , 2016 .

[38]  Xiang‐Yun Du,et al.  In situ fabrication of halide perovskite nanocrystals embedded in polymer composites via microfluidic spinning microreactors , 2017 .

[39]  Gaoyi Han,et al.  An efficient titanium foil based perovskite solar cell: using a titanium dioxide nanowire array anode and transparent poly(3,4-ethylenedioxythiophene) electrode , 2016 .

[40]  Yixin Zhao,et al.  Solution Chemistry Engineering toward High-Efficiency Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[41]  Jinsong Huang,et al.  Is Cu a stable electrode material in hybrid perovskite solar cells for a 30-year lifetime? , 2016 .

[42]  Shweta Agarwala,et al.  Perovskite Solar Cells: Beyond Methylammonium Lead Iodide. , 2015, The journal of physical chemistry letters.

[43]  Young Chan Kim,et al.  Thermal Stability of CuSCN Hole Conductor-Based Perovskite Solar Cells. , 2016, ChemSusChem.

[44]  Alexander G. Agrios,et al.  Antimony-Doped Tin Oxide Aerogels as Porous Electron Collectors for Dye-Sensitized Solar Cells , 2014 .

[45]  Ilke Celik,et al.  A technoeconomic analysis of perovskite solar module manufacturing with low-cost materials and techniques , 2017 .

[46]  M. Grätzel,et al.  A Methoxydiphenylamine-Substituted Carbazole Twin Derivative: An Efficient Hole-Transporting Material for Perovskite Solar Cells. , 2015, Angewandte Chemie.

[47]  Hyun Suk Jung,et al.  Perovskite solar cells: from materials to devices. , 2015, Small.

[48]  Seok‐In Na,et al.  Efficient spin-coating-free planar heterojunction perovskite solar cells fabricated with successive brush-painting , 2017 .

[49]  Lixin Xiao,et al.  Water-Soluble Polymeric Interfacial Material for Planar Perovskite Solar Cells. , 2017, ACS applied materials & interfaces.

[50]  H. Choi,et al.  Enhancing Performance of Perovskite Solar Cells by TiCl4 Treatment of Different Concentrations , 2017 .

[51]  Josef Salbeck,et al.  Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies , 1998, Nature.

[52]  Jae Hoon Yun,et al.  Accelerated Degradation Due to Weakened Adhesion from Li-TFSI Additives in Perovskite Solar Cells. , 2017, ACS applied materials & interfaces.

[53]  M. Grätzel,et al.  Additive-Free Transparent Triarylamine-Based Polymeric Hole-Transport Materials for Stable Perovskite Solar Cells. , 2016, ChemSusChem.

[54]  David Worsley,et al.  A Transparent Conductive Adhesive Laminate Electrode for High‐Efficiency Organic‐Inorganic Lead Halide Perovskite Solar Cells , 2014, Advanced materials.

[55]  Rongrong Cheacharoen,et al.  Towards enabling stable lead halide perovskite solar cells; interplay between structural, environmental, and thermal stability , 2017 .

[56]  K. Gödel,et al.  Mesoporous SnO2 electron selective contact enables UV-stable perovskite solar cells , 2016 .

[57]  Trystan Watson,et al.  Humidity resistant fabrication of CH3NH3PbI3 perovskite solar cells and modules , 2017 .

[58]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[59]  Mohammad Khaja Nazeeruddin,et al.  One-Year stable perovskite solar cells by 2D/3D interface engineering , 2017, Nature Communications.

[60]  Qi Chen,et al.  Planar heterojunction perovskite solar cells via vapor-assisted solution process. , 2014, Journal of the American Chemical Society.

[61]  T. Park,et al.  Dopant-free polymeric hole transport materials for highly efficient and stable perovskite solar cells , 2016 .

[62]  M. Green,et al.  Spin-coating free fabrication for highly efficient perovskite solar cells , 2017 .

[63]  P. Lianos,et al.  Synthesis of new photosensitive H2BBQ2+[ZnCl4]2-/[(ZnCl)2(μ-BBH)] complexes, through selective oxidation of H2O to H2O2. , 2017, Dalton transactions.

[64]  Huanping Zhou,et al.  Photon management for efficient hybrid perovskite solar cells via synergetic localized grating and enhanced fluorescence effect , 2017 .

[65]  Anders Hagfeldt,et al.  Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance , 2016, Science.

[66]  Nripan Mathews,et al.  Advancements in perovskite solar cells: photophysics behind the photovoltaics , 2014 .

[67]  F. Jaramillo,et al.  Slot-die processing of flexible perovskite solar cells in ambient conditions , 2017 .

[68]  S. Yue,et al.  Turning a disadvantage into an advantage: synthesizing high-quality organometallic halide perovskite nanosheet arrays for humidity sensors , 2017 .

[69]  Yicheng Zhao,et al.  Light-Independent Ionic Transport in Inorganic Perovskite and Ultrastable Cs-Based Perovskite Solar Cells. , 2017, The journal of physical chemistry letters.

[70]  C. Wan,et al.  Immobilization of Poly(N-vinyl-2-pyrrolidone)-Capped Platinum Nanoclusters on Indium−Tin Oxide Glass and Its Application in Dye-Sensitized Solar Cells , 2007 .

[71]  Anders Hagfeldt,et al.  Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells , 2017 .

[72]  M. Nazeeruddin,et al.  Towards Extending Solar Cell Lifetimes: Addition of a Fluorous Cation to Triple Cation-Based Perovskite Films. , 2017, ChemSusChem.

[73]  Frederik C. Krebs,et al.  Upscaling of Perovskite Solar Cells: Fully Ambient Roll Processing of Flexible Perovskite Solar Cells with Printed Back Electrodes , 2015 .

[74]  Shihe Yang,et al.  Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells. , 2014, Angewandte Chemie.

[75]  P. Lin,et al.  Electrospray technique in fabricating perovskite-based hybrid solar cells under ambient conditions , 2017 .

[76]  E. Diau,et al.  A study on utilizing different metals as the back contact of CH3NH3PbI3 perovskite solar cells , 2016 .

[77]  D. G. Walker,et al.  Solvent-Assisted Self-Assembly of CsPbBr3 Perovskite Nanocrystals into One-Dimensional Superlattice , 2017 .

[78]  Qi Chen,et al.  Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. , 2016, Nature nanotechnology.

[79]  Yongbo Yuan,et al.  Ion Migration in Organometal Trihalide Perovskite and Its Impact on Photovoltaic Efficiency and Stability. , 2016, Accounts of chemical research.

[80]  M. Uddin,et al.  Nanostructured functional materials for advanced three-dimensional (3D) solar cells , 2017 .

[81]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[82]  Dieter Neher,et al.  Approaching the fill factor Shockley–Queisser limit in stable, dopant-free triple cation perovskite solar cells , 2017 .

[83]  Jianyong Ouyang,et al.  Transparent conductive oxide-free perovskite solar cells with PEDOT:PSS as transparent electrode. , 2015, ACS applied materials & interfaces.

[84]  Federico Bella,et al.  A flexible and portable powerpack by solid-state supercapacitor and dye-sensitized solar cell integration , 2017 .

[85]  S. Zakeeruddin,et al.  A vacuum flash–assisted solution process for high-efficiency large-area perovskite solar cells , 2016, Science.

[86]  Henry J. Snaith,et al.  A low viscosity, low boiling point, clean solvent system for the rapid crystallisation of highly specular perovskite films , 2017 .

[87]  Shannon A. Bonke,et al.  Back-contacted hybrid organic–inorganic perovskite solar cells , 2016 .

[88]  J. Noh,et al.  Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors , 2013, Nature Photonics.

[89]  Wei You,et al.  Status and prospects for ternary organic photovoltaics , 2015, Nature Photonics.

[90]  D. J. Lewis,et al.  Updating the road map to metal-halide perovskites for photovoltaics , 2017 .

[91]  Shahzad Ahmad,et al.  Impact of moisture on efficiency-determining electronic processes in perovskite solar cells , 2017 .

[92]  G. Boschloo,et al.  Ambient air-processed mixed-ion perovskites for high-efficiency solar cells , 2016 .

[93]  Chien-Hung Chiang,et al.  One-step fabrication of a mixed-halide perovskite film for a high-efficiency inverted solar cell and module , 2016 .

[94]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[95]  Min Gyu Kim,et al.  Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells , 2017, Science.

[96]  J. Troughton,et al.  Enhancing the stability of organolead halide perovskite films through polymer encapsulation , 2017 .

[97]  Tsutomu Miyasaka,et al.  First Evidence of CH3NH3PbI3 Optical Constants Improvement in a N2 Environment in the Range 40–80 °C , 2017 .

[98]  Cheng-Liang Liu,et al.  Controlled Deposition and Performance Optimization of Perovskite Solar Cells Using Ultrasonic Spray-Coating of Photoactive Layers. , 2017, ChemSusChem.

[99]  M. Buffiere,et al.  Copper Thiocyanate Inorganic Hole-Transporting Material for High-Efficiency Perovskite Solar Cells , 2016 .

[100]  J. E. Lugo,et al.  Materials for downconversion in solar cells: Perspectives and challenges , 2017 .

[101]  L. Quan,et al.  Efficient and stable solution-processed planar perovskite solar cells via contact passivation , 2017, Science.

[102]  Zhanhu Guo,et al.  Ni-doped α-Fe2O3 as electron transporting material for planar heterojunction perovskite solar cells with improved efficiency, reduced hysteresis and ultraviolet stability , 2017 .

[103]  N. Park,et al.  Effect of Selective Contacts on the Thermal Stability of Perovskite Solar Cells. , 2017, ACS applied materials & interfaces.

[104]  M. Isa,et al.  Structural and Ionic Transport Properties of Protonic Conducting Solid Biopolymer Electrolytes Based on Carboxymethyl Cellulose Doped with Ammonium Fluoride. , 2016, The journal of physical chemistry. B.

[105]  Yi-bing Cheng,et al.  Eliminated hysteresis and stabilized power output over 20% in planar heterojunction perovskite solar cells by compositional and surface modifications to the low-temperature-processed TiO2 layer , 2017 .

[106]  Yuguo Tang,et al.  Synthesis and Stabilization of Colloidal Perovskite Nanocrystals by Multidentate Polymer Micelles. , 2017, ACS applied materials & interfaces.

[107]  Alain Goriely,et al.  Morphological Control for High Performance, Solution‐Processed Planar Heterojunction Perovskite Solar Cells , 2014 .

[108]  B. Rech,et al.  Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature , 2016 .

[109]  Bumjoon J. Kim,et al.  High‐Performance Long‐Term‐Stable Dopant‐Free Perovskite Solar Cells and Additive‐Free Organic Solar Cells by Employing Newly Designed Multirole π‐Conjugated Polymers , 2017, Advanced materials.

[110]  A. Carlo,et al.  Stability issues pertaining large area perovskite and dye-sensitized solar cells and modules , 2017 .

[111]  Dimitrios Raptis,et al.  Study of perovskite solar cells synthesized under ambient conditions and of the performance of small cell modules , 2015 .

[112]  Min Ho Lee,et al.  Highly efficient CH3NH3PbI3−xClx mixed halide perovskite solar cells prepared by re-dissolution and crystal grain growth via spray coating , 2016 .

[113]  Improving self-assembly quality of colloidal crystal guided by statistical design of experiments* , 2017 .

[114]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[115]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[116]  High-performance and low platinum loading electrodeposited-Pt counter electrodes for dye-sensitized solar cells , 2011 .

[117]  Steffen Meyer,et al.  Stability Comparison of Perovskite Solar Cells Based on Zinc Oxide and Titania on Polymer Substrates. , 2016, ChemSusChem.

[118]  Xiaoxin Li,et al.  High-efficiency perovskite solar cells employing a conjugated donor–acceptor co-polymer as a hole-transporting material , 2017 .

[119]  Bernd Rech,et al.  It Takes Two to Tango-Double-Layer Selective Contacts in Perovskite Solar Cells for Improved Device Performance and Reduced Hysteresis. , 2017, ACS applied materials & interfaces.

[120]  Liwei Lin,et al.  Improved stability of perovskite solar cells in ambient air by controlling the mesoporous layer , 2015 .

[121]  Zhiguang Guo,et al.  Atomic Layer Deposition of TiO2 for a High-Efficiency Hole-Blocking Layer in Hole-Conductor-Free Perovskite Solar Cells Processed in Ambient Air. , 2016, ACS applied materials & interfaces.

[122]  A. Rizzo,et al.  Optical determination of Shockley-Read-Hall and interface recombination currents in hybrid perovskites , 2017, Scientific Reports.

[123]  J. Kettle,et al.  Development of multidye UV filters for OPVs using luminescent materials , 2017 .

[124]  Hyun Suk Jung,et al.  Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources , 2017 .

[125]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[126]  P. Biswas,et al.  Highly Stable Perovskite Solar Cells Fabricated Under Humid Ambient Conditions , 2017, IEEE Journal of Photovoltaics.

[127]  M. Deepa,et al.  Identifying the charge generation dynamics in Cs+-based triple cation mixed perovskite solar cells. , 2017, Physical chemistry chemical physics : PCCP.

[128]  Sandeep K. Das,et al.  Fully Ambient-Processed Perovskite Film for Perovskite Solar Cells: Effect of Solvent Polarity on Lead Iodide. , 2017, ACS applied materials & interfaces.

[129]  A. Bianchi,et al.  Iodide and triiodide anion complexes involving anion-π interactions with a tetrazine-based receptor. , 2017, Dalton transactions.

[130]  Yang Yang,et al.  Make perovskite solar cells stable , 2017, Nature.

[131]  Dong Uk Lee,et al.  Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells , 2017, Science.

[132]  K. Jiang,et al.  Carbon Nanotube Based Inverted Flexible Perovskite Solar Cells with All‐Inorganic Charge Contacts , 2017 .

[133]  Sujuan Wu,et al.  Simultaneously enhanced Jsc and FF by employing two solution-processed interfacial layers for inverted planar perovskite solar cells , 2017 .

[134]  Chain‐Shu Hsu,et al.  Thiophene and diketopyrrolopyrrole based conjugated polymers as efficient alternatives to spiro-OMeTAD in perovskite solar cells as hole transporting layers , 2017 .

[135]  Peng Gao,et al.  A molecularly engineered hole-transporting material for efficient perovskite solar cells , 2016, Nature Energy.

[136]  Bruce W. Alphenaar,et al.  Large-area hysteresis-free perovskite solar cells via temperature controlled doctor blading under ambient environment , 2016 .

[137]  Wolfgang Graf,et al.  Development of photochromic device with magnetron sputtered titanium dioxide and tungsten trioxide films , 2017 .

[138]  T. Strassner,et al.  Phosphorescent Thiazol-2-ylidene Platinum(II) Complexes with β-Ketoiminates: Single Isomer Formation by Ligand Architecture , 2016 .

[139]  Ullrich Steiner,et al.  Perovskite Solar Cell Stability in Humid Air: Partially Reversible Phase Transitions in the PbI2‐CH3NH3I‐H2O System , 2016 .

[140]  F. Giordano,et al.  Highly Efficient and Stable Perovskite Solar Cells based on a Low‐Cost Carbon Cloth , 2016 .

[141]  Meng Qiu,et al.  High-performance inverted planar perovskite solar cells without a hole transport layer via a solution process under ambient conditions , 2015 .

[142]  Johns Naduvath,et al.  Dye Sensitized Solar Cells: A Review , 2012 .

[143]  Wei Liu,et al.  Nanocellulose-based conductive materials and their emerging applications in energy devices - A review , 2017 .

[144]  T. Miyasaka Perovskite Photovoltaics: Rare Functions of Organo Lead Halide in Solar Cells and Optoelectronic Devices , 2015 .

[145]  Yunlong Li,et al.  CuSCN-Based Inverted Planar Perovskite Solar Cell with an Average PCE of 15.6%. , 2015, Nano letters.

[146]  Federico Bella,et al.  Effect of lithium bis(trifluoromethylsulfonyl)imide salt-doped UV-cured glycidyl methacrylate , 2015, Journal of Solid State Electrochemistry.

[147]  Aldo Di Carlo,et al.  Flexible Perovskite Photovoltaic Modules and Solar Cells Based on Atomic Layer Deposited Compact Layers and UV‐Irradiated TiO2 Scaffolds on Plastic Substrates , 2015 .

[148]  M. Nazeeruddin,et al.  Branched methoxydiphenylamine-substituted fluorene derivatives as hole transporting materials for high-performance perovskite solar cells , 2016 .

[149]  R. Heiderhoff,et al.  Indium‐Free Perovskite Solar Cells Enabled by Impermeable Tin‐Oxide Electron Extraction Layers , 2017, Advanced materials.

[150]  C. Brabec,et al.  Overcoming the Interface Losses in Planar Heterojunction Perovskite‐Based Solar Cells , 2016, Advanced materials.

[151]  Alex K.-Y. Jen,et al.  Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells , 2015 .

[152]  Zesheng Li,et al.  The effect of oxygen molecule adsorption on lead iodide perovskite surface by first-principles calculation , 2018 .

[153]  Timothy L. Kelly,et al.  Origin of the Thermal Instability in CH3NH3PbI3 Thin Films Deposited on ZnO , 2015 .

[154]  Anders Hagfeldt,et al.  Unbroken Perovskite: Interplay of Morphology, Electro‐optical Properties, and Ionic Movement , 2016, Advanced materials.

[155]  Aldo Di Carlo,et al.  Perovskite solar cells and large area modules (100 cm2) based on an air flow-assisted PbI2 blade coating deposition process , 2015 .

[156]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[157]  W. W. Leung,et al.  Conditioning lead iodide with dimethylsulfoxide and hydrochloric acid to control crystal growth improving performance of perovskite solar cell , 2017 .

[158]  Anders Hagfeldt,et al.  Perovskite Solar Cells: From the Atomic Level to Film Quality and Device Performance. , 2018, Angewandte Chemie.

[159]  E. Stathatos,et al.  High performance perovskite solar cells with functional highly porous TiO2 thin films constructed in ambient air , 2016 .

[160]  M. Grätzel,et al.  A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability , 2014, Science.

[161]  C. Boothroyd,et al.  Facile in situ synthesis of stable luminescent organic–inorganic lead halide perovskite nanoparticles in a polymer matrix , 2017 .

[162]  Zhiqun Lin,et al.  Noble metal–metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation , 2017 .

[163]  Juan Bisquert,et al.  Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. , 2013, Nano letters.

[164]  Licheng Sun,et al.  A solution-processable copper(II) phthalocyanine derivative as a dopant-free hole-transporting material for efficient and stable carbon counter electrode-based perovskite solar cells , 2017 .

[165]  Zhike Liu,et al.  Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity , 2016, Nature Communications.