Spatial coding and invariance in object-selective cortex

The present study examined the coding of spatial position in object selective cortex. Using functional magnetic resonance imaging (fMRI) and pattern classification analysis, we find that three areas in object selective cortex, the lateral occipital cortex area (LO), the fusiform face area (FFA), and the parahippocampal place area (PPA), robustly code the spatial position of objects. The analysis further revealed several anisotropies (e.g., horizontal/vertical asymmetry) in the representation of visual space in these areas. Finally, we show that the representation of information in these areas permits object category information to be extracted across varying locations in the visual field; a finding that suggests a potential neural solution to accomplishing translation invariance.

[1]  R. Goebel,et al.  Individual faces elicit distinct response patterns in human anterior temporal cortex , 2007, Proceedings of the National Academy of Sciences.

[2]  D. Heeger,et al.  Two Retinotopic Visual Areas in Human Lateral Occipital Cortex , 2006, The Journal of Neuroscience.

[3]  T. Carlson,et al.  Patterns of Activity in the Categorical Representations of Objects , 2003 .

[4]  Russell A. Epstein,et al.  Position selectivity in scene- and object-responsive occipitotemporal regions. , 2007, Journal of neurophysiology.

[5]  Matthias Niemeier,et al.  A contralateral preference in the lateral occipital area: sensory and attentional mechanisms. , 2004, Cerebral cortex.

[6]  C. Galletti,et al.  Brain location and visual topography of cortical area V6A in the macaque monkey , 1999, The European journal of neuroscience.

[7]  David L. Sheinberg,et al.  Visual object recognition. , 1996, Annual review of neuroscience.

[8]  Nancy Kanwisher,et al.  The distribution of category and location information across object-selective regions in human visual cortex , 2008, Proceedings of the National Academy of Sciences.

[9]  Talma Hendler,et al.  Center–periphery organization of human object areas , 2001, Nature Neuroscience.

[10]  K. Nakayama,et al.  Enhanced Perception of Illusory Contours in the Lower Versus Upper Visual Hemifields , 1996, Science.

[11]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[12]  Marisa Carrasco,et al.  Neural correlates of the visual vertical meridian asymmetry. , 2006, Journal of vision.

[13]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[14]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[15]  Rafael Malach,et al.  Functional analysis of the periphery effect in human building related areas , 2004, Human brain mapping.

[16]  S. Edelman,et al.  Differential Processing of Objects under Various Viewing Conditions in the Human Lateral Occipital Complex , 1999, Neuron.

[17]  Patrick Cavanagh,et al.  Quadrantic deficit reveals anatomical constraints on selection , 2007, Proceedings of the National Academy of Sciences.

[18]  Ehud Zohary,et al.  Beyond retinotopic mapping: the spatial representation of objects in the human lateral occipital complex. , 2007, Cerebral cortex.

[19]  N. Kanwisher,et al.  A Preference for Contralateral Stimuli in Human Object- and Face-Selective Cortex , 2007, PloS one.

[20]  Russell A. Epstein,et al.  The Parahippocampal Place Area Recognition, Navigation, or Encoding? , 1999, Neuron.

[21]  N. Kanwisher,et al.  Only some spatial patterns of fMRI response are read out in task performance , 2007, Nature Neuroscience.

[22]  R. Dolan,et al.  Fmri activity patterns in human loc carry information about object exemplars within category , 2008 .

[23]  D. Heeger,et al.  Linear Systems Analysis of Functional Magnetic Resonance Imaging in Human V1 , 1996, The Journal of Neuroscience.

[24]  J. Maunsell,et al.  Anterior inferotemporal neurons of monkeys engaged in object recognition can be highly sensitive to object retinal position. , 2003, Journal of neurophysiology.

[25]  David D. Cox,et al.  Untangling invariant object recognition , 2007, Trends in Cognitive Sciences.

[26]  Keiji Tanaka,et al.  Inferotemporal cortex and object vision. , 1996, Annual review of neuroscience.

[27]  Sean M. Polyn,et al.  Beyond mind-reading: multi-voxel pattern analysis of fMRI data , 2006, Trends in Cognitive Sciences.

[28]  P. Cavanagh,et al.  Attentional resolution and the locus of visual awareness , 1996, Nature.

[29]  Talma Hendler,et al.  Eccentricity Bias as an Organizing Principle for Human High-Order Object Areas , 2002, Neuron.

[30]  I. Biederman,et al.  Localizing the cortical region mediating visual awareness of object identity. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[31]  R. Vogels,et al.  Spatial sensitivity of macaque inferior temporal neurons , 2000, The Journal of comparative neurology.

[32]  K. Grill-Spector,et al.  Relating retinotopic and object-selective responses in human lateral occipital cortex. , 2008, Journal of neurophysiology.

[33]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.