The Effect of Adding Randomly Weighted Edges

We consider the following question. We have a dense regular graph $G$ with degree $\alpha n$, where $\alpha>0$ is a constant. We add $m=o(n^2)$ random edges. The edges of the augmented graph $G(m)$ are given independent edge weights $X(e)$, $e\in E(G(m))$. We estimate the minimum weight of some specified combinatorial structures. We show that in certain cases, we can obtain the same estimate as is known for the complete graph, but scaled by a factor $\alpha^{-1}$. We consider spanning trees, shortest paths, perfect matchings in (pseudo-random) bipartite graphs.

[1]  Svante Linusson,et al.  A proof of Parisi’s conjecture on the random assignment problem , 2003, math/0303214.

[2]  Julia Böttcher,et al.  Embedding spanning bounded degree subgraphs in randomly perturbed graphs , 2017, Electron. Notes Discret. Math..

[3]  Benny Sudakov,et al.  Bounded-Degree Spanning Trees in Randomly Perturbed Graphs , 2015, SIAM J. Discret. Math..

[4]  G. Hooghiemstra,et al.  First passage percolation on random graphs with finite mean degrees , 2009, 0903.5136.

[5]  Roman Vershynin,et al.  Beyond Hirsch Conjecture: Walks on Random Polytopes and Smoothed Complexity of the Simplex Method , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[6]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[7]  Richard Mycroft,et al.  Hamilton ℓ-Cycles in Randomly Perturbed Hypergraphs , 2018, Electron. J. Comb..

[8]  Andrew Thomason Dense expanders and pseudo-random bipartite graphs , 1989, Discret. Math..

[9]  Alan M. Frieze,et al.  The probabilistic relationship between the assignment and asymmetric traveling salesman problems , 2001, SODA '01.

[10]  Alan M. Frieze,et al.  Adding random edges to dense graphs , 2004, Random Struct. Algorithms.

[11]  Eugene L. Lawler,et al.  The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization , 1985 .

[12]  Svante Janson,et al.  One, Two and Three Times log n/n for Paths in a Complete Graph with Random Weights , 1999, Combinatorics, Probability and Computing.

[13]  Benny Sudakov,et al.  Cycles and Matchings in Randomly Perturbed Digraphs and Hypergraphs , 2015, Combinatorics, Probability and Computing.

[14]  Jie Han,et al.  Hamiltonicity in randomly perturbed hypergraphs , 2018, J. Comb. Theory, Ser. B.

[15]  Junesang Choi,et al.  ON THE EULER'S CONSTANT , 1997 .

[16]  Alan M. Frieze,et al.  Minimum Cost Matching in a Random Graph with Random Costs , 2015, SIAM J. Discret. Math..

[17]  David W. Walkup,et al.  On the Expected Value of a Random Assignment Problem , 1979, SIAM J. Comput..

[18]  B. Sudakov,et al.  On smoothed analysis in dense graphs and formulas , 2006 .

[19]  G. Hooghiemstra,et al.  Weak disorder in the stochastic mean-field model of distance II , 2010, 1009.4025.

[20]  Alan M. Frieze,et al.  A Note on Random Minimum Length Spanning Trees , 2000, Electron. J. Comb..

[21]  D. Aldous Asymptotics in the random assignment problem , 1992 .

[22]  Julia Böttcher,et al.  EMBEDDING SPANNING BOUNDED DEGREE GRAPHS IN RANDOMLY PERTURBED GRAPHS , 2018 .

[23]  Svante Janson,et al.  Poisson Approximation for Large Deviations , 1990, Random Struct. Algorithms.

[24]  G. Parisi A Conjecture on random bipartite matching , 1998, cond-mat/9801176.

[25]  F. Burk Euler's Constant , 1985 .

[26]  Richard Mycroft,et al.  Hamilton ℓ-Cycles in Randomly Perturbed Hypergraphs , 2018, Electron. J. Comb..

[27]  Tom Bohman,et al.  How many random edges make a dense graph hamiltonian? , 2003, Random Struct. Algorithms.

[28]  Daniel Dadush,et al.  A friendly smoothed analysis of the simplex method , 2017, STOC.

[29]  Johan Wästlund Random matching problems on the complete graph , 2008 .

[30]  Andrzej Dudek,et al.  High powers of Hamiltonian cycles in randomly augmented graphs , 2020, J. Graph Theory.

[31]  C. Fortuin,et al.  Correlation inequalities on some partially ordered sets , 1971 .

[32]  Emil Powierski,et al.  Ramsey properties of randomly perturbed dense graphs , 2019, 1902.02197.

[33]  Martin E. Dyer,et al.  On patching algorithms for random asymmetric travelling salesman problems , 1990, Math. Program..

[34]  Alan M. Frieze,et al.  Random Minimum Length Spanning Trees in Regular Graphs , 1998, Comb..

[35]  Johan Wästlund AN EASY PROOF OF THE ζ ( 2 ) LIMIT IN THE RANDOM ASSIGNMENT PROBLEM , 2006 .

[36]  Yoshiharu Kohayakawa,et al.  Powers of tight Hamilton cycles in randomly perturbed hypergraphs , 2018, Random Struct. Algorithms.

[37]  József Balogh,et al.  Tilings in Randomly Perturbed Dense Graphs , 2017, Combinatorics, Probability and Computing.

[38]  Johan Wästlund An easy proof of the $\zeta(2)$ limit in the random assignment problem , 2009 .

[39]  Shagnik Das,et al.  Ramsey properties of randomly perturbed graphs: cliques and cycles , 2019, Combinatorics, Probability and Computing.

[40]  Elad Aigner-Horev,et al.  Rainbow Hamilton Cycles in Randomly Colored Randomly Perturbed Dense Graphs , 2020, SIAM J. Discret. Math..

[41]  Benny Sudakov,et al.  How many random edges make a dense hypergraph non‐2‐colorable? , 2007, Random Struct. Algorithms.

[42]  R. Karp An Upper Bound on the Expected Cost of an Optimal Assignment , 1987 .

[43]  Michael Anastos,et al.  How many randomly colored edges make a randomly colored dense graph rainbow Hamiltonian or rainbow connected? , 2018, J. Graph Theory.

[44]  B. Prabhakar,et al.  Proofs of the Parisi and Coppersmith‐Sorkin random assignment conjectures , 2005 .

[45]  Johan Wästlund A simple proof of the Parisi and Coppersmith-Sorkin formulas for the random assignment problem , 2005 .

[46]  A. Frieze,et al.  Introduction to Random Graphs , 2016 .

[47]  Olaf Parczyk,et al.  2-universality in Randomly Perturbed Graphs , 2019, Eur. J. Comb..