Berth scheduling by customer service differentiation: A multi-objective approach

In this paper the discrete and dynamic berth allocation problem is formulated as a multi-objective combinatorial optimization problem where vessel service is differentiated upon based on priority agreements. A genetic algorithms based heuristic is developed to solve the resulting problem. A number of numerical experiments showed that the heuristic performed well in solving large, real life instances. The heuristic provided a complete set of solutions that enable terminal operators to evaluate various berth scheduling policies and select the schedule that improves operations and customer satisfaction. The proposed algorithm outperformed a state of the art metaheuristic and provided improved results when compared to the weighted approach.

[1]  A. E. Eiben,et al.  Introduction to Evolutionary Computing , 2003, Natural Computing Series.

[2]  Chung-lun Li,et al.  Scheduling with multiple-job-on-one-processor pattern , 1998 .

[3]  E. Galperin Nonscalarized multiobjective global optimization , 1992 .

[4]  Michael Pinedo,et al.  Scheduling: Theory, Algorithms, and Systems , 1994 .

[5]  Maria Boile,et al.  Container Terminal Berth Planning , 2009 .

[6]  C. Coello TREATING CONSTRAINTS AS OBJECTIVES FOR SINGLE-OBJECTIVE EVOLUTIONARY OPTIMIZATION , 2000 .

[7]  Pierre Hansen,et al.  Variable neighborhood search for minimum cost berth allocation , 2003, Eur. J. Oper. Res..

[8]  Kap Hwan Kim,et al.  Berth scheduling by simulated annealing , 2003 .

[9]  J. R J Rao,et al.  Nonlinear programming continuation strategy for one parameter design optimization problems , 1989 .

[10]  E. Galperin Pareto Analysis vis-à-vis Balance Space Approach in Multiobjective Global Optimization , 1997 .

[11]  Taboada Jimenez,et al.  Multi-objective optimization algorithms considering objective preferences and solution clusters , 2007 .

[12]  Carlos A. Coello Coello,et al.  An updated survey of evolutionary multiobjective optimization techniques: state of the art and future trends , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[13]  Gerald G. Brown,et al.  Optimizing Ship Berthing , 1994 .

[14]  Andrew Lim,et al.  A stochastic beam search for the berth allocation problem , 2007, Decis. Support Syst..

[15]  Kap Hwan Kim,et al.  A scheduling method for Berth and Quay cranes , 2003 .

[16]  David W. Coit,et al.  Multi-objective optimization using genetic algorithms: A tutorial , 2006, Reliab. Eng. Syst. Saf..

[17]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[18]  Chung-Piaw Teo,et al.  Berth management in container terminal: the template design problem , 2006, OR Spectr..

[19]  K. K. Lai,et al.  A STUDY OF CONTAINER BERTH ALLOCATION. , 1992 .

[20]  Akio Imai,et al.  The simultaneous berth and quay crane allocation problem , 2008 .

[21]  Akio Imai,et al.  Efficient planning of berth allocation for container terminals in Asia , 1997 .

[22]  Gerald G. Brown,et al.  Optimizing Submarine Berthing with a Persistence Incentive , 1997 .

[23]  Akio Imai,et al.  Berth allocation with service priority , 2003 .

[24]  Andrew Lim,et al.  The berth planning problem , 1998, Oper. Res. Lett..

[25]  Ibrahim A. Baky,et al.  Interactive balance space approach for solving multi-level multi-objective programming problems , 2007, Inf. Sci..

[26]  Gilbert Laporte,et al.  Models and Tabu Search Heuristics for the Berth-Allocation Problem , 2005, Transp. Sci..

[27]  Akio Imai,et al.  The Berth Allocation Problem with Service Time and Delay Time Objectives , 2007 .

[28]  Yongpei Guan,et al.  The berth allocation problem: models and solution methods , 2004 .

[29]  Akio Imai,et al.  Berth allocation at indented berths for mega-containerships , 2007, Eur. J. Oper. Res..

[30]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[31]  X Shi,et al.  Interactive bilevel multi-objective decision making , 1997 .

[32]  Stefan Voß,et al.  Container terminal operation and operations research — a classification and literature review , 2004 .

[33]  Akio Imai,et al.  Berthing ships at a multi-user container terminal with a limited quay capacity , 2008 .

[34]  Akio Imai,et al.  The Dynamic Berth Allocation Problem for a Container Port , 2001 .

[35]  Chung-Lun Li,et al.  A multiprocessor task scheduling model for berth allocation: heuristic and worst-case analysis , 2002, Oper. Res. Lett..

[36]  Maria Boile,et al.  Intraterminal Transport Problem: System Description, Literature Review, and Research Recommendations , 2008 .

[37]  J. Cruz,et al.  On the Stackelberg strategy in nonzero-sum games , 1973 .

[38]  Akio Imai,et al.  BERTH ALLOCATION IN A CONTAINER PORT: USING A CONTINUOUS LOCATION SPACE APPROACH , 2005 .

[39]  Akio Imai,et al.  Berth allocation planning in the public berth system by genetic algorithms , 2001, Eur. J. Oper. Res..

[40]  Kap Hwan Kim,et al.  Berth scheduling for container terminals by using a sub-gradient optimization technique , 2002, J. Oper. Res. Soc..

[41]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[42]  Yacov Y. Haimes,et al.  Multiobjective Decision Making: Theory and Methodology , 1983 .

[43]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[44]  Maria Flavia Monaco,et al.  The Berth Allocation Problem: A Strong Formulation Solved by a Lagrangean Approach , 2007, Transp. Sci..