The natural history of ‘Oumuamua
暂无分享,去创建一个
Robert Jedicke | David E. Trilling | Sean N. Raymond | Karen J. Meech | Alan Fitzsimmons | Michele T. Bannister | Matthew M. Knight | Quan-Zhi Ye | Susanne Pfalzner | Asmita Bhandare | Piotr A. Dybczyński | A. Guilbert-Lepoutre | Andrew McNeill | Colin Snodgrass | D. Trilling | R. Jedicke | A. Fitzsimmons | Q. Ye | S. Raymond | S. Pfalzner | C. Snodgrass | K. Meech | M. Bannister | A. Guilbert-Lepoutre | A. McNeill | M. Knight | P. Dybczyński | A. Bhandare | Michele T. Asmita Piotr A. Alan Aurélie Robert Matthew M. Bannister Bhandare Dybczyński Fitzsimmons | Aurélie Guilbert-Lepoutre | Andrew McNeill
[1] Dimitri Veras,et al. Post-main-sequence planetary system evolution , 2016, Royal Society Open Science.
[2] C. Moutou,et al. The HARPS search for southern extra-solar planets , 2004, Astronomy & Astrophysics.
[3] Mikael Granvik,et al. REALISTIC DETECTABILITY OF CLOSE INTERSTELLAR COMETS , 2011, 1607.08162.
[4] J. M. Moore,et al. Overview of initial results from the reconnaissance flyby of a Kuiper Belt planetesimal: 2014 MU69 , 2019 .
[5] David Jewitt,et al. Project Pan-STARRS and the Outer Solar System , 2003 .
[6] Larry Denneau,et al. An Observational Upper Limit on the Interstellar Number Density of Asteroids and Comets , 2017, 1702.02237.
[7] Matthias Hahn,et al. The Nucleus of comet 67P/Churyumov–Gerasimenko – Part I: The global view – nucleus mass, mass-loss, porosity, and implications , 2018, Monthly Notices of the Royal Astronomical Society.
[8] Andrew A. West,et al. THE BROWN DWARF KINEMATICS PROJECT (BDKP). IV. RADIAL VELOCITIES OF 85 LATE-M AND L DWARFS WITH MagE , 2015, 1507.00057.
[9] Fabo Feng,et al. ‘Oumuamua as a Messenger from the Local Association , 2017, 1711.08800.
[10] Andrew J. Connolly,et al. APO Time-resolved Color Photometry of Highly Elongated Interstellar Object 1I/‘Oumuamua , 2017, 1711.04927.
[11] Qicheng Zhang,et al. Prospects for Backtracing 1I/‘Oumuamua and Future Interstellar Objects , 2017, 1712.08059.
[12] R. Paul Butler,et al. A New Planet around an M Dwarf: Revealing a Correlation between Exoplanets and Stellar Mass , 2007, 0707.2409.
[13] H. Boussier,et al. The extraordinary composition of the blue comet C/2016 R2 (PanSTARRS) , 2018, Astronomy & Astrophysics.
[14] Edwin L. Turner,et al. WILL THE LARGE SYNOPTIC SURVEY TELESCOPE DETECT EXTRA-SOLAR PLANETESIMALS ENTERING THE SOLAR SYSTEM? , 2009, 0908.3948.
[15] Luca Ricci,et al. The Disk Substructures at High Angular Resolution Project (DSHARP). VII. The Planet–Disk Interactions Interpretation , 2018, The Astrophysical Journal.
[16] T. Joseph W. Lazio,et al. Search for OH 18 cm Radio Emission from 1I/2017 U1 with the Green Bank Telescope , 2018, 1803.10187.
[17] Peter H. Schultz,et al. COMETARY VOLATILES AND THE ORIGIN OF COMETS , 2012 .
[18] Eric Gaidos,et al. What and whence 1I/`Oumuamua: a contact binary from the debris of a young planetary system? , 2017, 1712.06721.
[19] David E. Trilling,et al. Implications for Planetary System Formation from Interstellar Object 1I/2017 U1 (‘Oumuamua) , 2017, 1711.01344.
[20] Sean N. Raymond,et al. PLANET–PLANET SCATTERING IN PLANETESIMAL DISKS. II. PREDICTIONS FOR OUTER EXTRASOLAR PLANETARY SYSTEMS , 2010, 1001.3409.
[21] Marco Micheli,et al. Detection of radiation pressure acting on 2009 BD , 2011, 1106.0564.
[22] S. F. Green,et al. Rotation of cometary nuclei: new light curves and an update of the ensemble properties of Jupiter-family comets , 2017, 1707.02133.
[23] Zdenek Sekanina,et al. Preperihelion Outbursts and Disintegration of Comet C/2017 S3 (Pan-STARRS) , 2018 .
[24] A. Morbidelli,et al. Origin and Evolution of Short-period Comets , 2017, 1706.07447.
[25] Susanne Pfalzner,et al. SHORT DISSIPATION TIMES OF PROTO-PLANETARY DISKS: AN ARTIFACT OF SELECTION EFFECTS? , 2014 .
[26] K. J. Meech,et al. Plausible Home Stars of the Interstellar Object ‘Oumuamua Found in Gaia DR2 , 2018, The Astronomical Journal.
[27] J. Kawaguchi,et al. The Rubble-Pile Asteroid Itokawa as Observed by Hayabusa , 2006, Science.
[28] R. Rafikov,et al. 1I/2017 ’Oumuamua-like Interstellar Asteroids as Possible Messengers from Dead Stars , 2018, The Astrophysical Journal.
[29] Aaron Do,et al. Interstellar Interlopers: Number Density and Origin of ‘Oumuamua-like Objects , 2018, 1801.02821.
[30] Abraham Loeb,et al. Could Solar Radiation Pressure Explain ‘Oumuamua’s Peculiar Acceleration? , 2018, The Astrophysical Journal.
[31] Marcello Fulchignoni,et al. An analysis of the amplitude-phase relationship among asteroids , 1990 .
[32] Anders Johansen,et al. Initial mass function of planetesimals formed by the streaming instability , 2016, 1611.02285.
[33] Y. Medvedev,et al. Dust bombardment can explain the extremely elongated shape of 1I/’Oumuamua and the lack of interstellar objects , 2018, Monthly Notices of the Royal Astronomical Society: Letters.
[34] Shu-ichiro Inutsuka,et al. Collisional elongation: Possible origin of extremely elongated shape of 1I/‘Oumuamua , 2019, Icarus.
[35] G. Gilmore,et al. The distribution of low-mass stars in the Galactic disc , 1993 .
[36] J. S. Dohnanyi. Collisional model of asteroids and their debris , 1969 .
[37] David Jewitt,et al. Densities of Solar System Objects from Their Rotational Light Curves , 2007 .
[38] Alessandro Morbidelli,et al. Accretion of Uranus and Neptune from inward-migrating planetary embryos blocked by Jupiter and Saturn , 2015, 1506.03029.
[39] Ralf Kotulla,et al. Interstellar Interloper 1I/2017 U1: Observations from the NOT and WIYN Telescopes , 2017, 1711.05687.
[40] Gregory Laughlin,et al. The Feasibility and Benefits of In Situ Exploration of ‘Oumuamua-like Objects , 2018, 1803.07022.
[41] Z. Sekanina,et al. Comet Bowell /1980b/ - An active-looking dormant object , 1982 .
[42] Larry Denneau,et al. A brief visit from a red and extremely elongated interstellar asteroid , 2017, Nature.
[43] Robert Jedicke,et al. Spectroscopy and thermal modelling of the first interstellar object 1I/2017 U1 ‘Oumuamua , 2017, Nature Astronomy.
[44] A. Moro-Mart'in,et al. Could 1I/’Oumuamua be an Icy Fractal Aggregate? , 2019, The Astrophysical Journal.
[45] Thomas A. McGlynn,et al. On the Nondetection of Extrasolar Comets , 1989 .
[46] Akihiko Fukui,et al. THE EXOPLANET MASS-RATIO FUNCTION FROM THE MOA-II SURVEY: DISCOVERY OF A BREAK AND LIKELY PEAK AT A NEPTUNE MASS , 2016 .
[47] Michael Mommert,et al. Constraints on the Density and Internal Strength of 1I/’Oumuamua , 2018, 1803.09864.
[48] Susanne Pfalzner,et al. Cluster dynamics largely shapes protoplanetary disc sizes , 2016 .
[49] Sean N. Raymond,et al. Implications of the interstellar object 1I/'Oumuamua for planetary dynamics and planetesimal formation , 2017, 1711.09599.
[50] W. C. Danchi,et al. Incidence of debris discs around FGK stars in the solar neighbourhood , 2016, 1605.05837.
[51] Rixin Li,et al. Evidence for Universality in the Initial Planetesimal Mass Function , 2017, 1705.03889.
[52] Davide Farnocchia,et al. Non-gravitational acceleration in the trajectory of 1I/2017 U1 (‘Oumuamua) , 2018, Nature.
[53] R. Rafikov,et al. Spin Evolution and Cometary Interpretation of the Interstellar Minor Object 1I/2017 ’Oumuamua , 2018, The Astrophysical Journal.
[54] M. Wyatt,et al. Evolution of Debris Disks , 2008 .
[55] Abraham Loeb. Six Strange Facts About`Oumuamua , 2018 .
[56] K. Ulaczyk,et al. One or more bound planets per Milky Way star from microlensing observations , 2012, Nature.
[57] Munetaka Ueno,et al. AKARI NEAR-INFRARED SPECTROSCOPIC SURVEY FOR CO2 IN 18 COMETS , 2012 .
[58] Lori M. Feaga,et al. On the Rotation Period and Shape of the Hyperbolic Asteroid 1I/‘Oumuamua (2017 U1) from Its Lightcurve , 2017, 1711.01402.
[59] Jorge I. Zuluaga,et al. A General Method for Assessing the Origin of Interstellar Small Bodies: The Case of 1I/2017 U1 (‘Oumuamua) , 2017, 1711.09397.
[60] Karen J. Meech,et al. Using Cometary Activity to Trace the Physical and Chemical Evolution of Cometary Nuclei , 2004 .
[61] B. Moore,et al. The fate of planetesimal discs in young open clusters: implications for 1I/’Oumuamua, the Kuiper belt, the Oort cloud, and more , 2019, Monthly Notices of the Royal Astronomical Society.
[62] Qicheng Zhang,et al. 1I/2017 U1 (‘Oumuamua) is Hot: Imaging, Spectroscopy, and Search of Meteor Activity , 2017, 1711.02320.
[63] Sebastian Kurowski,et al. Tumbling motion of 1I/‘Oumuamua and its implications for the body’s distant past , 2018, Nature Astronomy.
[64] Matthew Holman,et al. Long-Term Stability of Planets in Binary Systems , 1996 .
[65] Arik W. Mitschang,et al. The velocity ellipsoid in the Galactic disc using Gaia DR1 , 2017, 1710.08479.
[66] Philippe Lamy,et al. Physical Properties of the Nucleus of Comet 2P/Encke , 2000 .
[67] David G. Schleicher,et al. THE EXTREMELY ANOMALOUS MOLECULAR ABUNDANCES OF COMET 96P/MACHHOLZ 1 FROM NARROWBAND PHOTOMETRY , 2008 .
[68] U. Fink,et al. Comet Yanaka (1988r): A New Class of Carbon-Poor Comet , 1991, Science.
[69] Petr Pravec,et al. The asteroid lightcurve database , 2009 .
[70] G. Domokos,et al. FORMATION OF SHARP EDGES AND PLANAR AREAS OF ASTEROIDS BY POLYHEDRAL ABRASION , 2009, 0904.4423.
[71] Michael Marsset,et al. Col-OSSOS: Colors of the Interstellar Planetesimal 1I/‘Oumuamua , 2017, 1711.06214.
[72] Luca Ricci,et al. The Disk Substructures at High Angular Resolution Program (DSHARP). VIII. The Rich Ringed Substructures in the AS 209 Disk , 2018, The Astrophysical Journal.
[73] T. B. Spahr,et al. ExploreNEOs. V. AVERAGE ALBEDO BY TAXONOMIC COMPLEX IN THE NEAR-EARTH ASTEROID POPULATION , 2011 .
[74] Adriana Maras,et al. Space weathering, reddening and gardening of asteroids: A complex problem , 2007 .
[75] Sean N. Raymond,et al. Interstellar Object ’Oumuamua as an Extinct Fragment of an Ejected Cometary Planetesimal , 2018, 1803.02840.
[76] Marco Micheli,et al. Inner solar system material discovered in the Oort cloud , 2016, Science Advances.
[77] M. Ćuk,et al. 1I/‘Oumuamua as a Tidal Disruption Fragment from a Binary Star System , 2017, 1712.01823.
[78] Mohamad Ali-Dib,et al. Ejection of rocky and icy material from binary star systems: implications for the origin and composition of 1I/‘Oumuamua , 2017, 1712.04435.
[79] A. Moro-Mart'in,et al. Origin of 1I/’Oumuamua. II. An Ejected Exo-Oort Cloud Object? , 2018, The Astronomical Journal.
[80] Petr Pravec,et al. The tumbling rotational state of 1I/‘Oumuamua , 2017, Nature Astronomy.
[81] Konstantin Batygin,et al. On the Anomalous Acceleration of 1I/2017 U1 ‘Oumuamua , 2019, The Astrophysical Journal.
[82] P. A. Dybczy'nski,et al. Investigating the dynamical history of the interstellar object 'Oumuamua , 2017, 1711.06618.
[83] Elizabeth A. Lada,et al. Disk Frequencies and Lifetimes in Young Clusters , 2001, astro-ph/0104347.
[84] Simon Portegies Zwart,et al. The origin of interstellar asteroidal objects like 1I/2017 U1 , 2017, 1711.03558.
[85] Hans Rickman,et al. Nongravitational effects and the aging of periodic comets , 1991 .
[86] H. J. Rocha-Pinto,et al. A kinematical age for the interstellar object 1I/’Oumuamua , 2018, Monthly Notices of the Royal Astronomical Society.
[87] S. Debei,et al. Size-frequency distribution of boulders ≥7 m on comet 67P/Churyumov-Gerasimenko , 2015 .
[88] Joshua N. Winn,et al. The Occurrence and Architecture of Exoplanetary Systems , 2014, 1410.4199.
[89] Sean N. Raymond,et al. PLANET–PLANET SCATTERING IN PLANETESIMAL DISKS , 2009, 0905.3741.
[90] Amir Siraj,et al. ‘Oumuamua's Geometry Could Be More Extreme than Previously Inferred , 2019, Research Notes of the AAS.
[91] Alessandro Morbidelli,et al. Coupling dynamical and collisional evolution of small bodies: an application to the early ejection of planetesimals from the Jupiter-Saturn region , 2003 .
[92] G. Fazio,et al. Spitzer Observations of Interstellar Object 1I/‘Oumuamua , 2018, The Astronomical Journal.
[93] Sebastian Kurowski,et al. The Excited Spin State of 1I/2017 U1 ‘Oumuamua , 2018, 1804.03471.
[94] J. I. Katz,et al. Why is interstellar object 1I/2017 U1 (`Oumuamua) rocky, tumbling and possibly very prolate? , 2018, 1802.02273.
[95] A. Moro-Mart'in,et al. Origin of 1I/’Oumuamua. I. An Ejected Protoplanetary Disk Object? , 2018, The Astrophysical Journal.
[96] James A. Kwiecinski,et al. Effects of tidal torques on 1I/2017 U1 (‘Oumuamua) , 2018, Icarus.