Thermonuclear targets for direct-drive ignition by a megajoule laser pulse

[1]  Kunioki Mima,et al.  Random Phasing of High-Power Lasers for Uniform Target Acceleration and Plasma-Instability Suppression , 1984 .

[2]  J. D. Moody,et al.  Time-resolved x-ray imaging of high-power laser-irradiated underdense silica aerogels and agar foams , 1995 .

[3]  J. Lindl Development of the indirect‐drive approach to inertial confinement fusion and the target physics basis for ignition and gain , 1995 .

[4]  N. G. Basov,et al.  Thermonuclear gain of ICF targets with direct heating of ignitor , 1992 .

[5]  Roger O. Bangerter,et al.  Energy from Inertial Fusion , 1992 .

[6]  J. Meyer-ter-Vehn,et al.  The physics of inertial fusion - Hydrodynamics, dense plasma physics, beam-plasma interaction , 2004 .

[7]  Edward I. Moses,et al.  The National Ignition Facility: Laser Performance and First Experiments , 2005 .

[8]  Paul A. Jaanimagi,et al.  OMEGA ICF experiments and preparation for direct drive ignition on NIF , 2001 .

[9]  D. A. Callahan,et al.  Fuel gain exceeding unity in an inertially confined fusion implosion , 2014, Nature.

[10]  A. V. Bessarab,et al.  Investigation of the effect of large-scale shell asymmetry on Iskra-5 target operation , 1998 .

[11]  D. Besnard,et al.  The megajoule laser program — ignition at hand , 2007 .

[12]  Progress towards polar-drive ignition for the NIF , 2013 .

[13]  Gregory A. Moses,et al.  Inertial confinement fusion , 1982 .

[14]  Michael D. Perry,et al.  Ignition and high gain with ultrapowerful lasers , 1994 .

[15]  Kunioki Mima,et al.  Self‐consistent growth rate of the Rayleigh–Taylor instability in an ablatively accelerating plasma , 1985 .

[16]  Samuel A. Letzring,et al.  Improved laser‐beam uniformity using the angular dispersion of frequency‐modulated light , 1989 .

[17]  S. Garanin High-power lasers and their applications in high-energy-density physics studies , 2011 .