Whole Exome Sequencing in Patients With Ossi cation of the Spinal Ligaments

[1]  C. Coarfa,et al.  An actin-WHAMM interaction linking SETD2 and autophagy. , 2020, Biochemical and biophysical research communications.

[2]  Zunwen Lin,et al.  Autophagy in spinal ligament fibroblasts: evidence and possible implications for ossification of the posterior longitudinal ligament , 2020, Journal of Orthopaedic Surgery and Research.

[3]  Hongwei Wang,et al.  WHAMM initiates autolysosome tubulation by promoting actin polymerization on autolysosomes , 2019, Nature Communications.

[4]  D. Nam,et al.  Molecular Pathophysiology of Ossification of the Posterior Longitudinal Ligament (OPLL) , 2019, Biomolecules & therapeutics.

[5]  Maurice H. T. Ling,et al.  Advancing Personalized Medicine Through the Application of Whole Exome Sequencing and Big Data Analytics , 2019, Front. Genet..

[6]  A. Steinkasserer,et al.  Autophagic degradation of lamins facilitates the nuclear egress of herpes simplex virus type 1 , 2018, The Journal of cell biology.

[7]  Nan Yang,et al.  AWESOME: a database of SNPs that affect protein post-translational modifications , 2018, Nucleic Acids Res..

[8]  A. Zannettino,et al.  miRNA-376c-3p Mediates TWIST-1 Inhibition of Bone Marrow-Derived Stromal Cell Osteogenesis and Can Reduce Aberrant Bone Formation of TWIST-1 Haploinsufficient Calvarial Cells. , 2018, Stem cells and development.

[9]  J. Gamieldien,et al.  Defining the molecular signatures of Achilles tendinopathy and anterior cruciate ligament ruptures: A whole-exome sequencing approach , 2018, PloS one.

[10]  M. Araúzo-Bravo,et al.  Esrrb Unlocks Silenced Enhancers for Reprogramming to Naive Pluripotency. , 2018, Cell stem cell.

[11]  Yan Yu,et al.  Hsa-let-7c controls the committed differentiation of IGF-1-treated mesenchymal stem cells derived from dental pulps by targeting IGF-1R via the MAPK pathways , 2018, Experimental & Molecular Medicine.

[12]  Haibin Li,et al.  Genetic polymorphisms in bone morphogenetic protein receptor type IA gene predisposes individuals to ossification of the posterior longitudinal ligament of the cervical spine via the smad signaling pathway , 2018, BMC Musculoskeletal Disorders.

[13]  G. Kumagai,et al.  Suppression of osteogenic differentiation in mesenchymal stem cells from patients with ossification of the posterior longitudinal ligament by a histamine‐2‐receptor antagonist , 2017, European journal of pharmacology.

[14]  Zhongqiang Chen,et al.  Two novel BMP-2 variants identified in patients with thoracic ossification of the ligamentum flavum , 2017, European Journal of Human Genetics.

[15]  M. Welch,et al.  Rab1 recruits WHAMM during membrane remodeling but limits actin nucleation , 2016, Molecular biology of the cell.

[16]  A. Mesfin,et al.  Ossification of the Posterior Longitudinal Ligament: Etiology, Diagnosis, and Outcomes of Nonoperative and Operative Management , 2015, Global spine journal.

[17]  R. Dominguez,et al.  WHAMM links actin assembly via the Arp2/3 complex to autophagy , 2015, Autophagy.

[18]  H. Baba,et al.  A genome-wide association study identifies susceptibility loci for ossification of the posterior longitudinal ligament of the spine , 2014, Nature Genetics.

[19]  C-Y Chen,et al.  Whole exome sequencing implicates PTCH1 and COL17A1 genes in ossification of the posterior longitudinal ligament of the cervical spine in Chinese patients. , 2014, Genetics and molecular research : GMR.

[20]  Soroku Yagihashi,et al.  Osteogenic lineage commitment of mesenchymal stem cells from patients with ossification of the posterior longitudinal ligament. , 2014, Biochemical and biophysical research communications.

[21]  L. Ding,et al.  Association of NPP1 polymorphism with postoperative progression of ossification of the posterior longitudinal ligament in Chinese patients. , 2013, Genetics and molecular research : GMR.

[22]  Y. Harada,et al.  Immunohistochemical localization of mesenchymal stem cells in ossified human spinal ligaments. , 2013, Biochemical and biophysical research communications.

[23]  B. He,et al.  A single nucleotide polymorphism in the human bone morphogenetic protein-2 gene (109T > G) affects the Smad signaling pathway and the predisposition to ossification of the posterior longitudinal ligament of the spine. , 2013, Chinese medical journal.

[24]  Y. Teng,et al.  Association of transforming growth factor-beta 1 gene polymorphism with genetic susceptibility to ossification of the posterior longitudinal ligament in Korean patients. , 2013, Genetics and molecular research : GMR.

[25]  F. Guo,et al.  Epidemiological survey of ossification of the ligamentum flavum in thoracic spine: CT imaging observation of 993 cases , 2013, European Spine Journal.

[26]  H. Ng,et al.  Ncoa3 functions as an essential Esrrb coactivator to sustain embryonic stem cell self-renewal and reprogramming. , 2012, Genes & development.

[27]  H. Baba,et al.  A genome-wide sib-pair linkage analysis of ossification of the posterior longitudinal ligament of the spine , 2012, Journal of Bone and Mineral Metabolism.

[28]  K. Rottner,et al.  WASH, WHAMM and JMY: regulation of Arp2/3 complex and beyond. , 2010, Trends in cell biology.

[29]  W. Yuan,et al.  RUNX2 Polymorphisms Associated with OPLL and OLF in the Han Population , 2010, Clinical orthopaedics and related research.

[30]  K. Cheung,et al.  Prevalence, Distribution, and Morphology of Ossification of the Ligamentum Flavum: A Population Study of One Thousand Seven Hundred Thirty-Six Magnetic Resonance Imaging Scans , 2010, Spine.

[31]  W. Talbot,et al.  Kif1b is essential for mRNA localization in oligodendrocytes and development of myelinated axons , 2009, Nature Genetics.

[32]  Thomas Lufkin,et al.  Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb , 2009, Nature Cell Biology.

[33]  S. Leal,et al.  Mutations of ESRRB encoding estrogen-related receptor beta cause autosomal-recessive nonsyndromic hearing impairment DFNB35. , 2008, American journal of human genetics.

[34]  Toshihiro Tanaka,et al.  Genomewide linkage and linkage disequilibrium analyses identify COL6A1, on chromosome 21, as the locus for ossification of the posterior longitudinal ligament of the spine. , 2003, American journal of human genetics.

[35]  K. Davis,et al.  Evidence for a susceptibility gene for autism on chromosome 2 and for genetic heterogeneity. , 2001, American journal of human genetics.