Genome sequencing of normal cells reveals developmental lineages and mutational processes

[1]  M. Loeffler,et al.  Lgr5(+) gastric stem cells divide symmetrically to effect epithelial homeostasis in the pylorus. , 2013, Cell reports.

[2]  E. Shapiro,et al.  Single-cell sequencing-based technologies will revolutionize whole-organism science , 2013, Nature Reviews Genetics.

[3]  David T. W. Jones,et al.  Signatures of mutational processes in human cancer , 2013, Nature.

[4]  H. Clevers,et al.  Growing Self-Organizing Mini-Guts from a Single Intestinal Stem Cell: Mechanism and Applications , 2013, Science.

[5]  R. Lasken Single-cell sequencing in its prime , 2013, Nature Biotechnology.

[6]  M. Stratton,et al.  Deciphering Signatures of Mutational Processes Operative in Human Cancer , 2013, Cell reports.

[7]  Steven A. Roberts,et al.  Mutational heterogeneity in cancer and the search for new cancer-associated genes , 2013 .

[8]  H. Ruohola-Baker,et al.  Use of somatic mutations to quantify random contributions to mouse development , 2013, BMC Genomics.

[9]  B. Schuster-Böckler,et al.  Chromatin organization is a major influence on regional mutation rates in human cancer cells , 2012, Nature.

[10]  A. Børresen-Dale,et al.  The Life History of 21 Breast Cancers , 2012, Cell.

[11]  A. Børresen-Dale,et al.  Mutational Processes Molding the Genomes of 21 Breast Cancers , 2012, Cell.

[12]  B. Rannala,et al.  Molecular phylogenetics: principles and practice , 2012, Nature Reviews Genetics.

[13]  Scott R. Kennedy,et al.  Somatic mutations in aging, cancer and neurodegeneration , 2012, Mechanisms of Ageing and Development.

[14]  B. Preston,et al.  Decoding cell lineage from acquired mutations using arbitrary deep sequencing , 2011, Nature Methods.

[15]  Hans Clevers,et al.  Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. , 2011, Gastroenterology.

[16]  Subhajyoti De,et al.  Somatic mosaicism in healthy human tissues. , 2011, Trends in genetics : TIG.

[17]  H. Clevers,et al.  Lgr5 intestinal stem cells have high telomerase activity and randomly segregate their chromosomes , 2011, The EMBO journal.

[18]  Alexander W. Bruce,et al.  Developmental control of the early mammalian embryo: competition among heterogeneous cells that biases cell fate. , 2010, Current opinion in genetics & development.

[19]  Hans Clevers,et al.  Intestinal Crypt Homeostasis Results from Neutral Competition between Symmetrically Dividing Lgr5 Stem Cells , 2010, Cell.

[20]  Enni Markkanen,et al.  Oxygen as a friend and enemy: How to combat the mutational potential of 8-oxo-guanine. , 2010, DNA repair.

[21]  Hans Clevers,et al.  Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. , 2010, Cell stem cell.

[22]  H. Clevers,et al.  Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche , 2009, Nature.

[23]  E. Shapiro,et al.  Reconstruction of Cell Lineage Trees in Mice , 2008, PLoS ONE.

[24]  H. Clevers,et al.  Very long-term self-renewal of small intestine, colon, and hair follicles from cycling Lgr5+ve stem cells. , 2008, Cold Spring Harbor symposia on quantitative biology.

[25]  H. Clevers,et al.  Identification of stem cells in small intestine and colon by marker gene Lgr5 , 2007, Nature.

[26]  S. Salipante,et al.  A phylogenetic approach to mapping cell fate. , 2007, Current topics in developmental biology.

[27]  S. Salipante,et al.  Phylogenetic fate mapping. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Darryl Shibata,et al.  Counting Divisions in a Human Somatic Cell Tree: How, What and Why , 2006, Cell cycle.

[29]  M. Zernicka-Goetz,et al.  The first cleavage of the mouse zygote predicts the blastocyst axis , 2005, Nature.