Learning and Intelligent Optimization

Noisy optimization is the optimization of objective functions corrupted by noise. A portfolio of algorithms is a set of algorithms equipped with an algorithm selection tool for distributing the computational power among them. We study portfolios of noisy optimization solvers, show that different settings lead to different performances, obtain mathematically proved performance (in the sense that the portfolio performs nearly as well as the best of its’ algorithms) by an ad hoc selection algorithm dedicated to noisy optimization. A somehow surprising result is that it is better to compare solvers with some lag; i.e., recommend the current recommendation of the best solver, selected from a comparison based on their recommendations earlier in the run.

[1]  M. Brattain,et al.  Differential display of reticulocalbin in the highly invasive cell line, MDA-MB-435, versus the poorly invasive cell line, MCF-7. , 1997, Biochemical and biophysical research communications.

[2]  A. Talari,et al.  Raman Spectroscopy of Biological Tissues , 2007 .

[3]  H. Ishibuchi,et al.  Effects of repair procedures on the performance of EMO algorithms for multiobjective 0/1 knapsack problems , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[4]  Sadan Kulturel-Konak,et al.  An artificial immune system based algorithm to solve unequal area facility layout problem , 2012, Expert Syst. Appl..

[5]  Alan D. Christiansen,et al.  MOSES: A MULTIOBJECTIVE OPTIMIZATION TOOL FOR ENGINEERING DESIGN , 1999 .

[6]  Berna Haktanirlar Ulutas,et al.  A clonal selection algorithm for dynamic facility layout problems , 2009 .

[7]  Panos M. Pardalos,et al.  Classification of cancer cell death with spectral dimensionality reduction and generalized eigenvalues , 2011, Artif. Intell. Medicine.

[8]  Frank Hoffmeister,et al.  Problem-Independent Handling of Constraints by Use of Metric Penalty Functions , 1996, Evolutionary Programming.

[9]  Florin Cutzu,et al.  Polychotomous Classification with Pairwise Classifiers: A New Voting Principle , 2003, Multiple Classifier Systems.

[10]  Zheng Tang,et al.  Improved Clonal Algorithm and Its Application to Traveling Salesman Problem , 2007 .

[11]  Gérard Dreyfus,et al.  Single-layer learning revisited: a stepwise procedure for building and training a neural network , 1989, NATO Neurocomputing.

[12]  Wei Zheng,et al.  Classification of colonic tissues using near-infrared Raman spectroscopy and support vector machines. , 2008, International journal of oncology.

[13]  S. Kaufmann,et al.  A multistep model for paclitaxel-induced apoptosis in human breast cancer cell lines. , 2001, Experimental cell research.

[14]  El-Ghazali Talbi,et al.  Metaheuristics - From Design to Implementation , 2009 .

[15]  Kalyanmoy Deb,et al.  Evolutionary Algorithms for Multi-Criterion Optimization in Engineering Design , 1999 .

[16]  M. Jordan,et al.  Microtubules as a target for anticancer drugs , 2004, Nature Reviews Cancer.

[17]  P. Vandenabeele,et al.  Reference database of Raman spectra of biological molecules , 2007 .

[18]  Michael B. Fenn,et al.  Data Mining and Optimization Applied to Raman Spectroscopy for Oncology Applications , 2011 .

[19]  D. McLean,et al.  Automated Autofluorescence Background Subtraction Algorithm for Biomedical Raman Spectroscopy , 2007, Applied spectroscopy.

[20]  Christopher J. Frank,et al.  Raman spectroscopy of normal and diseased human breast tissues. , 1995, Analytical chemistry.

[21]  Jonathan Timmis,et al.  A resource limited artificial immune system for data analysis , 2001, Knowl. Based Syst..

[22]  Gary G. Yen,et al.  Constraint Handling in Multiobjective Evolutionary Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[23]  Panos M. Pardalos,et al.  Handbook of applied optimization , 2002 .

[24]  A. Mahadevan-Jansen,et al.  Automated Method for Subtraction of Fluorescence from Biological Raman Spectra , 2003, Applied spectroscopy.

[25]  Lothar Thiele,et al.  An evolutionary algorithm for multiobjective optimization: the strength Pareto approach , 1998 .

[26]  Fritz S. Allen,et al.  Automated Fluorescence Rejection Using Shifted Excitation Raman Difference Spectroscopy , 2002 .

[27]  J. Hazra,et al.  A multi‐objective optimal power flow using particle swarm optimization , 2011 .

[28]  Efrn Mezura-Montes,et al.  Constraint-Handling in Evolutionary Optimization , 2009 .

[29]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[30]  Manoj Kumar Tiwari,et al.  A clonal algorithm to solve economic load dispatch , 2007 .

[31]  Hiroyuki Sato,et al.  Two-stage non-dominated sorting and directed mating for solving problems with multi-objectives and constraints , 2013, GECCO '13.

[32]  Hans Kellerer,et al.  Knapsack problems , 2004 .

[33]  Yanchun Liang,et al.  Clonal Selection Based Memetic Algorithm for Job Shop Scheduling Problems , 2008 .

[34]  Andrew J Berger,et al.  Method for automated background subtraction from Raman spectra containing known contaminants. , 2009, The Analyst.

[35]  Carlos A. Coello Coello,et al.  Constrained Optimization via Multiobjective Evolutionary Algorithms , 2008, Multiobjective Problem Solving from Nature.

[36]  E. R. Petersen STOCHASTIC VEHICLE ROUTING PROBLEM WITH RESTOCKING. , 2000 .

[37]  T. H. Wang,et al.  Paclitaxel‐induced cell death , 2000, Cancer.

[38]  Jonathan A. Wright,et al.  Self-adaptive fitness formulation for constrained optimization , 2003, IEEE Trans. Evol. Comput..

[39]  Bruce L. Golden,et al.  Stochastic vehicle routing: A comprehensive approach , 1983 .

[40]  Eckart Zitzler,et al.  Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .

[41]  Christopher R. Houck,et al.  On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA's , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[42]  P. Pardalos,et al.  Pareto optimality, game theory and equilibria , 2008 .

[43]  Abdollah Homaifar,et al.  Constrained Optimization Via Genetic Algorithms , 1994, Simul..

[44]  Kiyoshi Tanaka,et al.  Controlling Dominance Area of Solutions and Its Impact on the Performance of MOEAs , 2007, EMO.

[45]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[46]  Thomas Bäck,et al.  A Survey of Evolution Strategies , 1991, ICGA.

[47]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[48]  Jouni Lampinen,et al.  Constrained Real-Parameter Optimization with Generalized Differential Evolution , 2006, 2006 IEEE International Conference on Evolutionary Computation.