GACS : une approche ascendante pour la coordination spatiale

The design of spatial coordination mechanisms for dynamica l and continuous multi- agent setting is a difficult challenge. While the top-down de composition approach is inefficient on such problems, the bottom-up approach is more promising,but requires a tedious manual parameter tuning which raises scaling-up issues. Our own ap proach consists in replacing the manual tuning by a specially designed multicriteria evolut ionary algorithm devoted to the tun- ing of our spatial coordination formalism. In this paper, th rough a quantitative comparison on a complex spatial coordination problem treated previouslyby Balch and Hybinette, we show that our system, GACS, finds a population of solutions as efficient as this predecessor though our approach requires less involvement from the designers a can find simpler solutions.

[1]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[2]  Tucker R. Balch,et al.  Behavior-based formation control for multirobot teams , 1998, IEEE Trans. Robotics Autom..

[3]  Lino A. Costa,et al.  An elitist genetic algorithm for multiobjective optimization , 2004 .

[4]  Eckart Zitzler,et al.  Evolutionary multi-objective optimization , 2007, Eur. J. Oper. Res..

[5]  Maja J. Mataric,et al.  Interaction and intelligent behavior , 1994 .

[6]  Olivier Sigaud,et al.  BASC, a Bottom-up Approach to automated design of Spatial Coordination , 2004 .

[7]  Olivier Sigaud,et al.  Coordination spatiale émergente par champs de potentie , 2003, Tech. Sci. Informatiques.

[8]  Ronald C. Arkin,et al.  Behavior-Based Robot Navigation for Extended Domains , 1992, Adapt. Behav..

[9]  Ronald C. Arkin,et al.  The Learning Of Reactive Control Parameters Through Genetic Algorithms , 1992, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.

[10]  Maja J. Mataric,et al.  Reward Functions for Accelerated Learning , 1994, ICML.

[11]  Ronald C. Arkin,et al.  Using Genetic Algorithms to Learn Reactive Control Parameters for Autonomous Robotic Navigation , 1994, Adapt. Behav..

[12]  Russell J. Clark,et al.  Learning momentum: online performance enhancement for reactive systems , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[13]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[14]  Olivier Sigaud,et al.  Spatial coordination through social potential fields and genetic algorithms , 2002 .

[15]  G. Swaminathan Robot Motion Planning , 2006 .

[16]  Tucker R. Balch,et al.  Social potentials for scalable multi-robot formations , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[17]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[18]  Craig W. Reynolds Evolution of corridor following behavior in a noisy world , 1994 .

[19]  Maja J. Mataric,et al.  Designing and Understanding Adaptive Group Behavior , 1995, Adapt. Behav..

[20]  Jean-Arcady Meyer The Animat Approach : Simulation of adaptive behavior in Animals and Robots , 1998 .

[21]  J. Marchal Cours d'economie politique , 1950 .

[22]  Denyse Baillargeon,et al.  Bibliographie , 1929 .

[23]  Charles Gide,et al.  Cours d'économie politique , 1911 .

[24]  W ReynoldsCraig Flocks, herds and schools: A distributed behavioral model , 1987 .

[25]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[26]  Craig W. Reynolds An evolved, vision-based behavioral model of coordinated group motion , 1993 .

[27]  Ronald C. Arkin,et al.  Motor Schema — Based Mobile Robot Navigation , 1989, Int. J. Robotics Res..