Multiple convergent hypothalamus–brainstem circuits drive defensive behavior

[1]  Benjamin Midler,et al.  The gut commensal Blautia maintains colonic mucus function under low-fiber consumption through secretion of short-chain fatty acids , 2022, bioRxiv.

[2]  David J. Anderson,et al.  Multimodal Analysis of Cell Types in a Hypothalamic Node Controlling Social Behavior , 2019, Cell.

[3]  Matthew T. Kaufman,et al.  Single-trial neural dynamics are dominated by richly varied movements , 2019, Nature Neuroscience.

[4]  T. Hökfelt,et al.  Unified Classification of Molecular, Network, and Endocrine Features of Hypothalamic Neurons. , 2019, Annual review of neuroscience.

[5]  Ryan M. Cassidy,et al.  Defensive Behaviors Driven by a Hypothalamic-Ventral Midbrain Circuit , 2019, eNeuro.

[6]  James A. Gagnon,et al.  Zebrafish oxytocin neurons drive nocifensive behavior via brainstem premotor targets , 2019, Nature Neuroscience.

[7]  Ilana B. Witten,et al.  Specialized coding of sensory, motor, and cognitive variables in VTA dopamine neurons , 2019, Nature.

[8]  Talia N. Lerner,et al.  Neuronal Dynamics Regulating Brain and Behavioral State Transitions , 2019, Cell.

[9]  Dayu Lin,et al.  Rapid, biphasic CRF neuronal responses encode positive and negative valence , 2019, Nature Neuroscience.

[10]  Pengcheng Zhou,et al.  CaImAn an open source tool for scalable calcium imaging data analysis , 2019, eLife.

[11]  Nimrod D. Rubinstein,et al.  Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region , 2018, Science.

[12]  J. Blechman,et al.  Development and Function of the Zebrafish Neuroendocrine System , 2018, Model Animals in Neuroendocrinology.

[13]  R. Palmiter The Parabrachial Nucleus: CGRP Neurons Function as a General Alarm , 2018, Trends in Neurosciences.

[14]  Johannes Stegmaier,et al.  Third-generation in situ hybridization chain reaction: multiplexed, quantitative, sensitive, versatile, robust , 2018, Development.

[15]  William E. Allen,et al.  Ancestral Circuits for the Coordinated Modulation of Brain State , 2017, Cell.

[16]  Adam Claridge‐Chang,et al.  Optical inhibition of larval zebrafish behaviour with anion channelrhodopsins , 2017, BMC Biology.

[17]  Florian Engert,et al.  A Brain-wide Circuit Model of Heat-Evoked Swimming Behavior in Larval Zebrafish , 2017, Neuron.

[18]  William E. Allen,et al.  Thirst-associated preoptic neurons encode an aversive motivational drive , 2017, Science.

[19]  Ryan Remedios,et al.  Social Behaviour Shapes Hypothalamic Neural Ensemble Representations Of Conspecific Sex , 2017, Nature.

[20]  Alessandro Filosa,et al.  Genetic targeting and anatomical registration of neuronal populations in the zebrafish brain with a new set of BAC transgenic tools , 2017, Scientific Reports.

[21]  Herwig Baier,et al.  Linking Neurons to Network Function and Behavior by Two-Photon Holographic Optogenetics and Volumetric Imaging , 2017, Neuron.

[22]  Yen-Chu Lin,et al.  Warm-Sensitive Neurons that Control Body Temperature , 2016, Cell.

[23]  Johann H. Bollmann,et al.  The Severity of Acute Stress Is Represented by Increased Synchronous Activity and Recruitment of Hypothalamic CRH Neurons , 2016, The Journal of Neuroscience.

[24]  Timothy W. Dunn,et al.  Neural Circuits Underlying Visually Evoked Escapes in Larval Zebrafish , 2016, Neuron.

[25]  James E. Fitzgerald,et al.  Whole-brain activity mapping onto a zebrafish brain atlas , 2015, Nature Methods.

[26]  Herwig Baier,et al.  A Visual Pathway for Looming-Evoked Escape in Larval Zebrafish , 2015, Current Biology.

[27]  F. Engert,et al.  Large-scale imaging in small brains , 2015, Current Opinion in Neurobiology.

[28]  Jiu-lin Du,et al.  Intron targeting-mediated and endogenous gene integrity-maintaining knockin in zebrafish using the CRISPR/Cas9 system , 2015, Cell Research.

[29]  M. Meister,et al.  Author response: Ventromedial hypothalamic neurons control a defensive emotion state , 2015 .

[30]  S. Ryu,et al.  Coexpression analysis of nine neuropeptides in the neurosecretory preoptic area of larval zebrafish , 2015, Front. Neuroanat..

[31]  C. Saper,et al.  The hypothalamus , 2014, Current Biology.

[32]  S. Ryu,et al.  The behavior of larval zebrafish reveals stressor-mediated anorexia during early vertebrate development , 2014, Front. Behav. Neurosci..

[33]  Philipp J. Keller,et al.  Light-sheet functional imaging in fictively behaving zebrafish , 2014, Nature Methods.

[34]  Mitsuko Watabe-Uchida,et al.  Galanin neurons in the medial preoptic area govern parental behavior , 2014, Nature.

[35]  S. Ryu,et al.  Molecular neuroanatomy and chemoarchitecture of the neurosecretory preoptic‐hypothalamic area in zebrafish larvae , 2014, The Journal of comparative neurology.

[36]  David J. Anderson,et al.  Scalable Control of Mounting and Attack by ESR1+ Neurons in the Ventromedial Hypothalamus , 2014, Nature.

[37]  Chie Satou,et al.  Hindbrain V2a Neurons in the Excitation of Spinal Locomotor Circuits during Zebrafish Swimming , 2013, Current Biology.

[38]  S. Sternson Hypothalamic Survival Circuits: Blueprints for Purposive Behaviors , 2013, Neuron.

[39]  Denis Burdakov,et al.  Glutamate and GABA as rapid effectors of hypothalamic “peptidergic” neurons , 2012, Front. Behav. Neurosci..

[40]  M. A. Masino,et al.  The Conserved Dopaminergic Diencephalospinal Tract Mediates Vertebrate Locomotor Development in Zebrafish Larvae , 2012, The Journal of Neuroscience.

[41]  Drew N. Robson,et al.  Brain-wide neuronal dynamics during motor adaptation in zebrafish , 2012, Nature.

[42]  C. Chien,et al.  Identification of a dopaminergic enhancer indicates complexity in vertebrate dopamine neuron phenotype specification. , 2011, Developmental biology.

[43]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[44]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[45]  A. Loewy,et al.  Paraventricular hypothalamic nucleus: Axonal projections to the brainstem , 2010, The Journal of comparative neurology.

[46]  S. Sternson,et al.  AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training , 2010, Nature Neuroscience.

[47]  G. Rojas-Piloni,et al.  Paraventricular hypothalamic oxytocinergic cells responding to noxious stimulation and projecting to the spinal dorsal horn represent a homeostatic analgesic mechanism , 2009, The European journal of neuroscience.

[48]  Marian Joëls,et al.  The neuro-symphony of stress , 2009, Nature Reviews Neuroscience.

[49]  Yukiko Kimura,et al.  V2a and V2b neurons are generated by the final divisions of pair-producing progenitors in the zebrafish spinal cord , 2008, Development.

[50]  Kristen E. Severi,et al.  Control of visually guided behavior by distinct populations of spinal projection neurons , 2008, Nature Neuroscience.

[51]  Zheng Zhang,et al.  Visualization of monoaminergic neurons and neurotoxicity of MPTP in live transgenic zebrafish. , 2008, Developmental biology.

[52]  H. Hausen,et al.  Conserved Sensory-Neurosecretory Cell Types in Annelid and Fish Forebrain: Insights into Hypothalamus Evolution , 2007, Cell.

[53]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[54]  Herwig Baier,et al.  Transactivation from Gal4-VP16 transgenic insertions for tissue-specific cell labeling and ablation in zebrafish. , 2007, Developmental biology.

[55]  V. Hartenstein The neuroendocrine system of invertebrates: a developmental and evolutionary perspective. , 2006, The Journal of endocrinology.

[56]  K. Hatta,et al.  Cell tracking using a photoconvertible fluorescent protein , 2006, Nature Protocols.

[57]  V. Parpura,et al.  Vesicular Glutamate Transporter Expression in Supraoptic Neurones Suggests a Glutamatergic Phenotype , 2006, Journal of neuroendocrinology.

[58]  D. Faber,et al.  The Mauthner Cell Half a Century Later: A Neurobiological Model for Decision-Making? , 2005, Neuron.

[59]  Wiebke Herzog,et al.  Pituitary corticotroph ontogeny and regulation in transgenic zebrafish. , 2003, Molecular endocrinology.

[60]  Torsten Rohlfing,et al.  Nonrigid image registration in shared-memory multiprocessor environments with application to brains, breasts, and bees , 2003, IEEE Transactions on Information Technology in Biomedicine.

[61]  J. Herman,et al.  Distribution of vesicular glutamate transporter mRNA in rat hypothalamus , 2002, The Journal of comparative neurology.

[62]  G. Edelman,et al.  Degeneracy and complexity in biological systems , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[63]  W. K. Metcalfe,et al.  Brain neurons which project to the spinal cord in young larvae of the zebrafish , 1982, The Journal of comparative neurology.

[64]  W. R. Ingram THE HYPOTHALAMUS , 1938, Ciba clinical symposia.

[65]  et al.,et al.  Jupyter Notebooks - a publishing format for reproducible computational workflows , 2016, ELPUB.

[66]  Skipper Seabold,et al.  Statsmodels: Econometric and Statistical Modeling with Python , 2010, SciPy.

[67]  Wes McKinney,et al.  Data Structures for Statistical Computing in Python , 2010, SciPy.

[68]  Ryan M. Anderson,et al.  Nitroreductase-mediated cell/tissue ablation in zebrafish: a spatially and temporally controlled ablation method with applications in developmental and regeneration studies , 2008, Nature Protocols.

[69]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[70]  Joshua D. Warner,et al.  Distributed under Creative Commons Cc-by 4.0 Scikit-image: Image Processing in Python , 2022 .