Chapter 17 Type II NADH: quinone oxidoreductases of Plasmodium falciparum and Mycobacterium tuberculosis kinetic and high-throughput assays.

[1]  D. Wirth,et al.  Type II NADH dehydrogenase of the respiratory chain of Plasmodium falciparum and its inhibitors. , 2009, Bioorganic & medicinal chemistry letters.

[2]  T. Pohl,et al.  Assembly of the Escherichia coli NADH:ubiquinone oxidoreductase (complex I). , 2008, Biochimica et biophysica acta.

[3]  Andrew Owen,et al.  Acridinediones: Selective and Potent Inhibitors of the Malaria Parasite Mitochondrial bc1 Complex , 2008, Molecular Pharmacology.

[4]  A. Regev,et al.  Distinct physiological states of Plasmodium falciparum in malaria-infected patients , 2007, Nature.

[5]  I. Gilbert,et al.  Target assessment for antiparasitic drug discovery. , 2007, Trends in parasitology.

[6]  Christopher P Austin,et al.  High-throughput screening assays for the identification of chemical probes. , 2007, Nature chemical biology.

[7]  G. Biagini,et al.  The malaria parasite type II NADH:quinone oxidoreductase: an alternative enzyme for an alternative lifestyle. , 2007, Trends in parasitology.

[8]  H. Rubin,et al.  Type II NADH: menaquinone oxidoreductase of Mycobacterium tuberculosis. , 2007, Infectious disorders drug targets.

[9]  Uwe Gross,et al.  Growth Inhibition of Toxoplasma gondii and Plasmodium falciparum by Nanomolar Concentrations of 1-Hydroxy-2-Dodecyl-4(1H)Quinolone, a High-Affinity Inhibitor of Alternative (Type II) NADH Dehydrogenases , 2007, Antimicrobial Agents and Chemotherapy.

[10]  G. Biagini,et al.  Functional Characterization and Target Validation of Alternative Complex I of Plasmodium falciparum Mitochondria , 2006, Antimicrobial Agents and Chemotherapy.

[11]  H. Rubin,et al.  Steady-state Kinetics and Inhibitory Action of Antitubercular Phenothiazines on Mycobacterium tuberculosis Type-II NADH-Menaquinone Oxidoreductase (NDH-2)* , 2006, Journal of Biological Chemistry.

[12]  Brian J Eastwood,et al.  A Comparison of Assay Performance Measures in Screening Assays: Signal Window, Z' Factor, and Assay Variability Ratio , 2006, Journal of biomolecular screening.

[13]  Maria L. Gennaro,et al.  Changes in energy metabolism of Mycobacterium tuberculosis in mouse lung and under in vitro conditions affecting aerobic respiration , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[14]  H. Rubin,et al.  Inhibitors of type II NADH:menaquinone oxidoreductase represent a class of antitubercular drugs. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[15]  D. Gerloff,et al.  Functional properties of the alternative NADH:ubiquinone oxidoreductase from E. coli through comparative 3‐D modelling , 2004, FEBS letters.

[16]  M. Teixeira,et al.  New Insights into Type II NAD(P)H:Quinone Oxidoreductases , 2004, Microbiology and Molecular Biology Reviews.

[17]  G. Brasseur,et al.  Human Disease-related Mutations in Cytochrome b Studied in Yeast* , 2004, Journal of Biological Chemistry.

[18]  E. Rubin,et al.  Genes required for mycobacterial growth defined by high density mutagenesis , 2003, Molecular microbiology.

[19]  R. Gwilliam,et al.  Sequence of Plasmodium falciparum chromosomes 1, 3–9 and 13 , 2002, Nature.

[20]  B. Barquera,et al.  Purification and characterization of the recombinant Na(+)-translocating NADH:quinone oxidoreductase from Vibrio cholerae. , 2002, Biochemistry.

[21]  D. S. Beattie,et al.  Novel FMN-containing rotenone-insensitive NADH dehydrogenase from Trypanosoma brucei mitochondria: isolation and characterization. , 2002, Biochemistry.

[22]  S. Kerscher Diversity and origin of alternative NADH:ubiquinone oxidoreductases. , 2000, Biochimica et biophysica acta.

[23]  P. Rich,et al.  A motif for quinone binding sites in respiratory and photosynthetic systems. , 2000, Journal of molecular biology.

[24]  B. Barrell,et al.  Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence , 1998, Nature.

[25]  C. Betzel,et al.  The refined crystal structure of Pseudomonas putida lipoamide dehydrogenase complexed with NAD+ at 2.45 Å resolution , 1992, Proteins.

[26]  Kurt Warncke,et al.  Nature of biological electron transfer , 1992, Nature.

[27]  W. H. Elliott,et al.  Data for Biochemical Research , 1986 .

[28]  C. Lambros,et al.  Synchronization of Plasmodium falciparum erythrocytic stages in culture. , 1979, The Journal of parasitology.

[29]  I. G. Young,et al.  Role of quinones in electron transport to oxygen and nitrate in Escherichia coli. Studies with a ubiA- menA- double quinone mutant. , 1977, Biochimica et biophysica acta.

[30]  W. Trager,et al.  Human malaria parasites in continuous culture. , 1976, Science.

[31]  G. Biagini,et al.  Malaria-parasite mitochondrial dehydrogenases as drug targets: too early to write the obituary. , 2008, Trends in parasitology.

[32]  M. Pudney,et al.  Effect of mitochondrial inhibitors on adenosinetriphosphate levels in Plasmodium falciparum. , 1990, Comparative biochemistry and physiology. B, Comparative biochemistry.