Embedded plasmonic nanomenhirs as location-specific biosensors.

We introduce a novel optical biosensing platform that exploits the asymmetry of nanostructures embedded in nanocavities, termed nanomenhirs. Upon oblique illumination using plane polarized white light, two plasmonic resonances attributable to the bases and the axes of the nanomenhirs emerge; these are used for location-specific sensing of membrane-binding events. Numerical simulations of the near field distributions confirmed the experimental results. As a proof-of-concept, we present a model biosensing experiment that exploits the dual-sensing capability, the size selectivity offered by the sensor geometry, and the possibility to separately biochemically modify the nanomenhirs and the nanocavities for the specific binding of lipid membrane structures to the nanomenhirs.

[1]  Andreas B. Dahlin,et al.  Optical Antennas: Nanoantennas for refractive-index sensing , 2013 .

[2]  Takumi Sannomiya,et al.  Optical properties of nanohole arrays in metal-dielectric double films prepared by mask-on-metal colloidal lithography. , 2012, ACS nano.

[3]  Janos Vörös,et al.  Nanoplasmonic sensing of metal-halide complex formation and the electric double layer capacitor. , 2012, Nanoscale.

[4]  Sang‐Hyun Oh,et al.  Engineering metallic nanostructures for plasmonics and nanophotonics , 2012, Reports on progress in physics. Physical Society.

[5]  Fredrik Höök,et al.  Material-selective surface chemistry for nanoplasmonic sensors: optimizing sensitivity and controlling binding to local hot spots. , 2012, Nano letters.

[6]  Andreas B. Dahlin,et al.  Nanoplasmonic sensing combined with artificial cell membranes , 2012 .

[7]  Andreas B. Dahlin,et al.  Performance of Nanoplasmonic Biosensors , 2012 .

[8]  M. Stockman Nanoplasmonics: past, present, and glimpse into future. , 2011, Optics express.

[9]  A. Egner,et al.  Formation of nanopore-spanning lipid bilayers through liposome fusion. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[10]  Stefano Cabrini,et al.  Fabrication of metallic nanocones by induced deposition of etch masks and ion milling , 2011 .

[11]  S. Patskovsky,et al.  Integrated silicon-based nanoplasmonic sensor. , 2011, Optics express.

[12]  M. Stockman Nanoplasmonics: The physics behind the applications , 2011 .

[13]  M. Textor,et al.  Particle lithography from colloidal self-assembly at liquid-liquid interfaces. , 2010, ACS nano.

[14]  C. Hafner,et al.  Multiple Multipole Program Modelling for Nano Plasmonic Sensors , 2010 .

[15]  R. Neutze,et al.  Refractive-index-based screening of membrane-protein-mediated transfer across biological membranes. , 2010, Biophysical journal.

[16]  Fredrik Höök,et al.  Improving the limit of detection of nanoscale sensors by directed binding to high-sensitivity areas. , 2010, ACS nano.

[17]  U. Hohenester,et al.  The Optimal Aspect Ratio of Gold Nanorods for Plasmonic Bio-sensing , 2010 .

[18]  Fredrik Höök,et al.  Locally functionalized short-range ordered nanoplasmonic pores for bioanalytical sensing. , 2010, Analytical chemistry.

[19]  Mark B Gerstein,et al.  Computational analysis of membrane proteins: the largest class of drug targets. , 2009, Drug discovery today.

[20]  Mikael Käll,et al.  Refractometric sensing using propagating versus localized surface plasmons: a direct comparison. , 2009, Nano letters.

[21]  L. Gunnarsson,et al.  Ultrahigh sensitivity made simple: nanoplasmonic label-free biosensing with an extremely low limit-of-detection for bacterial and cancer diagnostics , 2009, Nanotechnology.

[22]  C. Hafner,et al.  Symmetry Decomposed Multiple Multipole Program Calculation of Plasmonic Particles on Substrate for Biosensing Applications , 2009 .

[23]  Fredrik Höök,et al.  Nanoplasmonic biosensing with focus on short-range ordered nanoholes in thin metal films (Review) , 2008, Biointerphases.

[24]  Erik Reimhult,et al.  Membrane biosensor platforms using nano- and microporous supports. , 2008, Trends in biotechnology.

[25]  John A Rogers,et al.  Nanostructured plasmonic sensors. , 2008, Chemical reviews.

[26]  N. Halas,et al.  Nano-optics from sensing to waveguiding , 2007 .

[27]  E. Reimhult,et al.  Fabrication of nanoporous silicon nitride and silicon oxide films of controlled size and porosity for combined electrochemical and waveguide measurements , 2007 .

[28]  Sihai Chen,et al.  Plasmonic detection of a model analyte in serum by a gold nanorod sensor. , 2007, Analytical chemistry.

[29]  Jonas O. Tegenfeldt,et al.  Generic surface modification strategy for sensing applications based on Au/SiO2 nanostructures , 2007, Biointerphases.

[30]  T. Ebbesen,et al.  Light in tiny holes , 2007, Nature.

[31]  C. Mirkin,et al.  Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. , 2006, Nano letters.

[32]  Fredrik Höök,et al.  Improving the instrumental resolution of sensors based on localized surface plasmon resonance. , 2006, Analytical chemistry.

[33]  Younan Xia,et al.  Localized surface plasmon resonance spectroscopy of single silver nanocubes. , 2005, Nano letters.

[34]  George C. Schatz,et al.  A nanoscale optical biosensor: The long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles , 2004 .

[35]  Ashutosh Chilkoti,et al.  A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. , 2002, Analytical chemistry.

[36]  C. Hafner Multiple multipole program computation of periodic structures , 1995 .

[37]  G. Weissmann,et al.  Phospholipid spherules (liposomes) as a model for biological membranes. , 1968, Journal of lipid research.