Development of Low-Cost Spaceborne Multi-Frequency GNSS Receiver for Navigation and GNSS Remote Sensing

This paper describes the development of a new generation of low-cost spaceborne multi-frequency global navigation satellite systems (GNSS) receivers for navigation and GNSS remote sensing applications. The spaceborne GNSS receiver-remote sensing instrument (SGR-ReSI) uses reflectometry to gather data, which may be used to derive information about the Earth: ocean, atmosphere, land, snow and ice. First, a review of the GNSS remote sensing including GNSS-reflectometry and radio occultation is presented. Then, the science and operational needs of GNSS receivers for the remote sensing of ocean, atmosphere, land, snow and ice are discussed. The design and development of a new generation of low-cost spaceborne multi-frequency GNSS receivers for navigation and GNSS remote sensing are described. Detailed results and designs of dual-band antennas and arrays for navigation, radio occultation and GNSS-reflectometry are presented. GNSS receiver designs, including both the software and hardware, are also explained. The processing algorithms and modelling techniques are described. Some initial results are also illustrated. This paper ends with discussions of future flight opportunities and a conclusion.

[1]  James L. Garrison,et al.  GPS: A New Tool for Ocean Science , 2001 .

[2]  Philip Jales,et al.  First Spaceborne Demonstration of Galileo Signals for GNSS Reflectometry , 2008 .

[3]  William A. Imbriale,et al.  Space Antenna Handbook , 2012 .

[4]  L. Boccia,et al.  Antennas for Modern Small Satellites , 2009, IEEE Antennas and Propagation Magazine.

[5]  X. Zou,et al.  Analysis and validation of GPS/MET data in the neutral atmosphere , 1997 .

[6]  Jan Kostelecký,et al.  Geometry and accuracy of reflecting points in bistatic satellite altimetry , 2005 .

[7]  C. Mitchell,et al.  Imaging of 3‐D plasmaspheric electron density using GPS to LEO satellite differential phase observations , 2011 .

[8]  Simone Pettinato,et al.  Monitoring sea-ice and dry snow with GNSS reflections , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[9]  James L. Garrison,et al.  An improved geometrical optics model for bistatic GPS scattering from the ocean surface , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[10]  P. Silvestrin,et al.  The Eddy Experiment: GNSS‐R speculometry for directional sea‐roughness retrieval from low altitude aircraft , 2004, physics/0407037.

[11]  Manuel Martin-Neira,et al.  Sea surface state measured using GPS reflected signals , 2002 .

[12]  Li Zheng,et al.  Compact dual‐band printed square quadrifilar helix antenna for global navigation satellite system receivers , 2011 .

[13]  Ralf Stosius,et al.  Simulation of space-borne tsunami detection using GNSS-Reflectometry applied to tsunamis in the Indian Ocean , 2010 .

[14]  Larry J. Romans,et al.  Ionospheric electron density profiles obtained with the Global Positioning System: Results from the GPS/MET experiment , 1998 .

[15]  Carmela Galdi,et al.  Analysis of GNSS‐R delay‐Doppler maps from the UK‐DMC satellite over the ocean , 2009 .

[16]  C. Zuffada,et al.  A Novel Technique For Characterizing The Thickness Of First-Year Sea Ice With The GPS Reflected Signal , 2002 .

[17]  Scott Gleason,et al.  Towards Sea Ice Remote Sensing with Space Detected GPS Signals: Demonstration of Technical Feasibility and Initial Consistency Check Using Low Resolution Sea Ice Information , 2010, Remote. Sens..

[18]  F. Nievinski,et al.  Can we measure snow depth with GPS receivers? , 2009 .

[19]  Anthony J. Mannucci,et al.  A global mapping technique for GPS‐derived ionospheric total electron content measurements , 1998 .

[20]  Martin Unwin,et al.  The Space GPS Reflectometry Experiment on the UK Disaster Monitoring Constellation Satellite , 2003 .

[21]  P. Axelrad,et al.  Sea ice remote sensing using surface reflected GPS signals , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).

[22]  Manuel Martín-Neira,et al.  The PARIS Ocean Altimeter In-Orbit Demonstrator , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[23]  B. Legrésy,et al.  Potential of reflected GNSS signals for ice sheet remote sensing , 2003 .

[24]  Jaroslav Klokočník,et al.  The value of ocean reflections of GPS signals to enhance satellite altimetry: data distribution and error analysis , 2003 .

[25]  Christian Rocken,et al.  Applications of COSMIC to Meteorology and Climate , 2000 .

[26]  Bertrand Chapron,et al.  Assessment of wind-forcing impact on a global wind-wave model using the TOPEX altimeter , 2006 .

[27]  P. J. Jales GNSS-Reflectometry: Techniques for Scatterometric Remote Sensing , 2010 .

[28]  Martin Unwin,et al.  Detection and Processing of bistatically reflected GPS signals from low Earth orbit for the purpose of ocean remote sensing , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[29]  Penina Axelrad,et al.  Retrieval of Ocean Surface Wind Speed and Wind Direction Using Reflected GPS Signals , 2004 .

[30]  Shuanggen Jin,et al.  Remote sensing using GNSS signals: Current status and future directions , 2011 .

[31]  James L. Garrison,et al.  Stochastic voltage model and experimental measurement of ocean-scattered GPS signal statistics , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[32]  S. Gleason,et al.  Remote sensing of ocean, ice and land surfaces using bistatically scattered GNSS signals from low Earth orbit , 2006 .

[33]  Stig Syndergaard,et al.  On the ionosphere calibration in GPS radio occultation measurements , 2000 .

[34]  M. Martín-Neira A pasive reflectometry and interferometry system (PARIS) application to ocean altimetry , 1993 .

[35]  J. Stephen,et al.  Utilizing GPS To Determine Ionospheric Delay Over the Ocean , 1996 .