Higher Order Tensor-Based Method for Delayed Exponential Fitting
暂无分享,去创建一个
Lieven De Lathauwer | Rémy Boyer | Karim Abed-Meraim | L. Lathauwer | K. Abed-Meraim | R. Boyer | L. D. Lathauwer
[1] Jörg Kliewer,et al. Audio subband coding with improved representation of transient signal segments , 1998, 9th European Signal Processing Conference (EUSIPCO 1998).
[2] D. Etter,et al. Adaptive estimation of time delays in sampled data systems , 1981 .
[3] Joos Vandewalle,et al. A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..
[4] Sabine Van Huffel,et al. Decimative subspace-based parameter estimation techniques , 2003, Signal Process..
[5] G. Golub,et al. Tracking a few extreme singular values and vectors in signal processing , 1990, Proc. IEEE.
[6] Nikos D. Sidiropoulos,et al. Almost sure identifiability of multidimensional harmonic retrieval , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).
[7] L. Lathauwer,et al. Dimensionality reduction in higher-order signal processing and rank-(R1,R2,…,RN) reduction in multilinear algebra , 2004 .
[8] Michael M. Goodwin. Multiresolution sinusoidal modeling using adaptive segmentation , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).
[9] Joos Vandewalle,et al. Computation of the Canonical Decomposition by Means of a Simultaneous Generalized Schur Decomposition , 2005, SIAM J. Matrix Anal. Appl..
[10] Lieven De Lathauwer,et al. Delayed exponential fitting by best tensor rank-(R/sub 1/, R/sub 2/, R/sub 3/) approximation , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..
[11] Andreas Jakobsson,et al. Subspace-based estimation of time delays and Doppler shifts , 1998, IEEE Trans. Signal Process..
[12] Karim Abed-Meraim,et al. Damped and delayed sinusoidal model for transient signals , 2005, IEEE Transactions on Signal Processing.
[13] Sabine Van Huffel,et al. Exponential data fitting using multilinear algebra: the single‐channel and multi‐channel case , 2005, Numer. Linear Algebra Appl..
[14] L. De Lathauwer,et al. Exponential data fitting using multilinear algebra: the decimative case , 2009 .
[15] Tapan K. Sarkar,et al. Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise , 1990, IEEE Trans. Acoust. Speech Signal Process..
[16] Rasmus Bro,et al. Multi-way Analysis with Applications in the Chemical Sciences , 2004 .
[17] Phillip A. Regalia,et al. On the Best Rank-1 Approximation of Higher-Order Supersymmetric Tensors , 2001, SIAM J. Matrix Anal. Appl..
[18] S. Vanhuffel,et al. Algorithm for time-domain NMR data fitting based on total least squares , 1994 .
[19] Gilles Villard,et al. A rank theorem for Vandermonde matrices , 2004 .
[20] K. Abed-Meraim,et al. Structured tensor-based algorithms for delayed exponential fitting , 2004, Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004..
[21] Karim Abed-Meraim,et al. Audio modeling based on delayed sinusoids , 2004, IEEE Transactions on Speech and Audio Processing.
[22] L. Tucker,et al. Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.
[23] Joos Vandewalle,et al. A Grassmann-Rayleigh Quotient Iteration for Dimensionality Reduction in ICA , 2004, ICA.
[24] Edward A. Lee,et al. Adaptive Signal Models: Theory, Algorithms, and Audio Applications , 1998 .
[25] R. Doraiswami,et al. Real-time estimation of the parameters of power system small signal oscillations , 1993 .
[26] Thomas Kailath,et al. ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..
[27] Nikos D. Sidiropoulos,et al. Generalizing Carathéodory's uniqueness of harmonic parameterization to N dimensions , 2001, IEEE Trans. Inf. Theory.
[28] J. Chang,et al. Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .
[29] Sabine Van Huffel,et al. Enhanced resolution based on minimum variance estimation and exponential data modeling , 1993, Signal Process..
[30] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[31] D. van Ormondt,et al. Improved algorithm for noniterative time-domain model fitting to exponentially damped magnetic resonance signals , 1987 .
[32] Jean Laroche,et al. A dynamic programming approach to audio segmentation and speech/music discrimination , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.
[33] Richard A. Harshman,et al. Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .
[34] Sabine Van Huffel,et al. Parameter Estimation with Prior Knowledge of Known Signal Poles for the Quantification of NMR Spectroscopy Data in the Time Domain , 1996 .
[35] B. Everitt,et al. Three-Mode Principal Component Analysis. , 1986 .
[36] L. Lathauwer,et al. Delayed Exponential Fitting by Best Tensor Rank-$ Approximation , 2005 .
[37] L. Lathauwer. First-order perturbation analysis of the best rank-(R1, R2, R3) approximation in multilinear algebra , 2004 .
[38] Phillip A. Regalia,et al. The higher-order power method revisited: convergence proofs and effective initialization , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).
[39] Torbjörn Wigren,et al. Asymptotic Cramer-Rao bounds for estimation of the parameters of damped sine waves in noise , 1991, IEEE Trans. Signal Process..
[40] Joos Vandewalle,et al. On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..
[41] Karim Abed-Meraim,et al. Damped and delayed sinuosidal model for transient modeling , 2005 .