J-self-adjoint operators with -symmetries: an extension theory approach
暂无分享,去创建一个
[1] Michael Griebel,et al. A multigrid method for constrained optimal control problems , 2011, J. Comput. Appl. Math..
[2] A. Eberle,et al. Quantitative approximations of evolving probability measures and sequential Markov chain Monte Carlo methods , 2010, Probability Theory and Related Fields.
[3] Michael Griebel,et al. Homogenization and Numerical Simulation of Flow in Geometries with Textile Microstructures , 2010, Multiscale Model. Simul..
[4] Felix Otto,et al. Domain branching in uniaxial ferromagnets: asymptotic behavior of the energy , 2010 .
[5] Helmut Harbrecht,et al. A finite element method for elliptic problems with stochastic input data , 2010 .
[6] H. Weber. On the short time asymptotic of the stochastic Allen–Cahn equation , 2009, 0908.0580.
[7] Matthias Kurzke. COMPACTNESS RESULTS FOR GINZBURG-LANDAU TYPE FUNCTIONALS WITH GENERAL POTENTIALS , 2010 .
[8] F. Otto,et al. A rigidity result for a perturbation of the geometrically linear three‐well problem , 2009 .
[9] Sören Bartels,et al. Semi-Implicit Approximation of Wave Maps into Smooth or Convex Surfaces , 2009, SIAM J. Numer. Anal..
[10] Helmut Harbrecht,et al. On output functionals of boundary value problems on stochastic domains , 2009 .
[11] Michael Griebel,et al. Optimized general sparse grid approximation spaces for operator equations , 2009, Math. Comput..
[12] S. Albeverio,et al. Bounds on Variation of Spectral Subspaces under J-Self-adjoint Perturbations , 2008, 0808.2783.
[13] S. Kuzhel. On Pseudo-Hermitian Operators with Generalized C-symmetries , 2009 .
[14] Rolf Krause,et al. A Recursive Trust-Region Method for Non-Convex Constrained Minimization , 2009 .
[15] S. Hildebrandt,et al. Conformal mapping of multiply connected Riemann domains by a variational approach , 2009 .
[16] Michael Griebel,et al. The BGY3dM model for the approximation of solvent densities. , 2008, The Journal of chemical physics.
[17] S. Albeverio,et al. Structure of derivations on various algebras of measurable operators for type I von Neumann algebras , 2008, 0808.0149.
[18] S. Albeverio,et al. Complete description of derivations on -compact operators for type I von Neumann algebras , 2008, 0807.4316.
[19] S. Kuzhel. On pseudo-Hermitian operators with generalized $\mathcal{C}$-symmetries , 2008, 0802.4269.
[20] H. Korsch,et al. A non-Hermitian symmetric Bose–Hubbard model: eigenvalue rings from unfolding higher-order exceptional points , 2008, 0802.3164.
[21] M. Znojil,et al. -symmetric deformations of Calogero models , 2008, 0802.0624.
[22] A. Fring,et al. Metrics and isospectral partners for the most generic cubic -symmetric non-Hermitian Hamiltonian , 2007, 0708.2403.
[23] M. Znojil. Quantum toboggans with two branch points , 2007, 0708.0087.
[24] A. Smilga. Cryptogauge symmetry and cryptoghosts for crypto-Hermitian Hamiltonians , 2007, 0706.4064.
[25] S. Albeverio,et al. On an algebra of operators related to flnite traces on a von Neumann algebra , 2008 .
[26] S. Albeverio,et al. On classification of singular measures and fractal properties of quasi-self-affine measures in R 2 , 2008 .
[27] J. Sjöstrand,et al. symmetric non-self-adjoint operators, diagonalizable and non-diagonalizable, with a real discrete spectrum , 2007 .
[28] D. Krejčiřík,et al. $$\mathcal {PT}$$ -Symmetric Waveguides , 2007, 0707.3039.
[29] E.Caliceti,et al. $PT$ symmetric non-selfadjoint operators, diagonalizable and non-diagonalizable, with real discrete spectrum , 2007, 0705.4218.
[30] M. Znojil. Conditional observability , 2007, 0704.3812.
[31] I. Rotter,et al. Projective Hilbert space structures at exceptional points , 2007, 0704.1291.
[32] Carl M. Bender,et al. Making sense of non-Hermitian Hamiltonians , 2007, hep-th/0703096.
[33] Tobias Finis,et al. ON THE SPECTRAL SIDE OF ARTHUR’S TRACE FORMULA II , 2007 .
[34] H. B. Geyer,et al. The Physics of Non-Hermitian Operators , 2006 .
[35] F. Cannata,et al. Perturbation theory of {\cal P}{\cal T} symmetric Hamiltonians , 2006, math-ph/0607039.
[36] Toshiaki Tanaka. General aspects of PT -symmetric and P-self-adjoint quantum theory in a Krein space , 2006, hep-th/0605035.
[37] F. Scholtz,et al. Moyal products -- a new perspective on quasi-hermitian quantum mechanics , 2006, quant-ph/0602187.
[38] C. Bender,et al. Classical trajectories for complex Hamiltonians , 2006, math-ph/0602040.
[39] C. Bender,et al. Calculation of the hidden symmetry operator for a -symmetric square well , 2006, quant-ph/0601123.
[40] A. Mostafazadeh. Metric Operator in Pseudo-Hermitian Quantum Mechanics and the Imaginary Cubic Potential , 2005, quant-ph/0508195.
[41] Stephan Ramon Garcia,et al. Complex Symmetric Operators and Applications II , 2005 .
[42] S. Albeverio,et al. One-dimensional Schrödinger operators with -symmetric zero-range potentials , 2005 .
[43] M. Znojil,et al. MHD α2-dynamo, Squire equation and PT-symmetric interpolation between square well and harmonic oscillator , 2005, math-ph/0501069.
[44] John Ellis,et al. Int. J. Mod. Phys. , 2005 .
[45] H. B. Geyer,et al. CPT - conserving Hamiltonians and their nonlinear supersymmetrization using differential charge-operators C , 2004, hep-th/0412211.
[46] H. Langer,et al. A Krein Space Approach to PT-symmetry , 2004 .
[47] C. Bender. Calculating the C Operator in PT-symmetric Quantum Mechanics , 2004 .
[48] C. Bender,et al. Semiclassical calculation of the C operator in PT -symmetric quantum mechanics , 2004, hep-th/0405113.
[49] S. Albeverio,et al. Pseudo-Hermiticity and Theory of Singular Perturbations , 2004 .
[50] C. Bender,et al. Complex extension of quantum mechanics. , 2002, Physical review letters.
[51] M. Znojil,et al. The interplay of supersymmetry and PT symmetry in quantum mechanics: A case study for the Scarf II potential , 2002, quant-ph/0206013.
[52] A. Mostafazadeh. Pseudo-supersymmetric quantum mechanics and isospectral pseudo-Hermitian Hamiltonians , 2002, math-ph/0203041.
[53] S. Fei,et al. Point Interactions: $$\mathcal{P}\mathcal{T}$$ -Hermiticity and Reality of the Spectrum , 2002 .
[54] Pseudo-Hermiticity versus PT-symmetry. II. A complete characterization of non-Hermitian Hamiltonians with a real spectrum , 2001, math-ph/0110016.
[55] G. Japaridze. Space of state vectors in -symmetric quantum mechanics , 2001 .
[56] R. Tateo,et al. Bethe Ansatz equations , and reality properties in PT-symmetric quantum mechanics , 2022 .
[57] S. Albeverio,et al. Scattering Theory for Quantum Fields¶with Indefinite Metric , 2001, math-ph/0501031.
[58] Sergio Albeverio,et al. Singular perturbations of differential operators : solvable Schrödinger type operators , 2000 .
[59] Sergio Albeverio,et al. Singular Perturbations of Differential Operators , 2000 .
[60] C. Bender,et al. PT-symmetric quantum mechanics , 1998, 2312.17386.
[61] Orsay,et al. SUSY Quantum Mechanics with Complex Superpotentials and Real Energy Spectra , 1998, quant-ph/9806019.
[62] C. Bender,et al. Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry , 1997, physics/9712001.
[63] S. Kuzhel,et al. Regular extensions of Hermitian operators , 1998 .
[64] J. Dankovicová. Czech , 1997, Journal of the International Phonetic Association.
[65] H. Langer,et al. Operator theory and ordinary differential operators , 1995 .
[66] S. Benvegnù,et al. Relativistic point interaction , 1994 .
[67] F. Scholtz,et al. Quasi-Hermitian operators in quantum mechanics and the variational principle , 1992 .
[68] T. Azizov,et al. Linear Operators in Spaces with an Indefinite Metric , 1989 .
[69] Sergio Albeverio,et al. Solvable Models in Quantum Mechanics , 1988 .
[70] A. W. Knapp. Lie groups beyond an introduction , 1988 .
[71] F. Gesztesy,et al. New analytically solvable models of relativistic point interactions , 1987 .
[72] Hans L. Cycon,et al. Schrodinger Operators: With Application to Quantum Mechanics and Global Geometry , 1987 .
[73] D. Race. The theory of J-selfadjoint extensions of J-symmetric operators , 1985 .
[74] I. Knowles. On the boundary conditions characterizing J-selfadjoint extensions of J-symmetric operators , 1981 .
[75] J. Dieudonne,et al. Encyclopedic Dictionary of Mathematics , 1979 .
[76] Mark S. C. Reed,et al. Method of Modern Mathematical Physics , 1972 .
[77] N. Vilenkin. Special Functions and the Theory of Group Representations , 1968 .
[78] I. M. Glazman. Direct methods of qualitative spectral analysis of singular differential operators , 1965 .
[79] W. Pauli. On Dirac's New Method of Field Quantization , 1943 .
[80] Paul Adrien Maurice Dirac,et al. Bakerian Lecture - The physical interpretation of quantum mechanics , 1942, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.