J-self-adjoint operators with -symmetries: an extension theory approach

A well-known tool in conventional (von Neumann) quantum mechanics is the self-adjoint extension technique for symmetric operators. It is used, e.g., for the construction of Dirac–Hermitian Hamiltonians with point-interaction potentials. Here we reshape this technique to allow for the construction of pseudo-Hermitian (J-self-adjoint) Hamiltonians with complex point interactions. We demonstrate that the resulting Hamiltonians are bijectively related to the so-called hypermaximal neutral subspaces of the defect Krein space of the symmetric operator. This symmetric operator is allowed to have arbitrary but equal deficiency indices ⟨n, n⟩. General properties of the operators for these Hamiltonians are derived. A detailed study of -operator parametrizations and Krein type resolvent formulae is provided for J-self-adjoint extensions of symmetric operators with deficiency indices ⟨2, 2⟩. The technique is exemplified on 1D pseudo-Hermitian Schrödinger and Dirac Hamiltonians with complex point-interaction potentials.

[1]  Michael Griebel,et al.  A multigrid method for constrained optimal control problems , 2011, J. Comput. Appl. Math..

[2]  A. Eberle,et al.  Quantitative approximations of evolving probability measures and sequential Markov chain Monte Carlo methods , 2010, Probability Theory and Related Fields.

[3]  Michael Griebel,et al.  Homogenization and Numerical Simulation of Flow in Geometries with Textile Microstructures , 2010, Multiscale Model. Simul..

[4]  Felix Otto,et al.  Domain branching in uniaxial ferromagnets: asymptotic behavior of the energy , 2010 .

[5]  Helmut Harbrecht,et al.  A finite element method for elliptic problems with stochastic input data , 2010 .

[6]  H. Weber On the short time asymptotic of the stochastic Allen–Cahn equation , 2009, 0908.0580.

[7]  Matthias Kurzke COMPACTNESS RESULTS FOR GINZBURG-LANDAU TYPE FUNCTIONALS WITH GENERAL POTENTIALS , 2010 .

[8]  F. Otto,et al.  A rigidity result for a perturbation of the geometrically linear three‐well problem , 2009 .

[9]  Sören Bartels,et al.  Semi-Implicit Approximation of Wave Maps into Smooth or Convex Surfaces , 2009, SIAM J. Numer. Anal..

[10]  Helmut Harbrecht,et al.  On output functionals of boundary value problems on stochastic domains , 2009 .

[11]  Michael Griebel,et al.  Optimized general sparse grid approximation spaces for operator equations , 2009, Math. Comput..

[12]  S. Albeverio,et al.  Bounds on Variation of Spectral Subspaces under J-Self-adjoint Perturbations , 2008, 0808.2783.

[13]  S. Kuzhel On Pseudo-Hermitian Operators with Generalized C-symmetries , 2009 .

[14]  Rolf Krause,et al.  A Recursive Trust-Region Method for Non-Convex Constrained Minimization , 2009 .

[15]  S. Hildebrandt,et al.  Conformal mapping of multiply connected Riemann domains by a variational approach , 2009 .

[16]  Michael Griebel,et al.  The BGY3dM model for the approximation of solvent densities. , 2008, The Journal of chemical physics.

[17]  S. Albeverio,et al.  Structure of derivations on various algebras of measurable operators for type I von Neumann algebras , 2008, 0808.0149.

[18]  S. Albeverio,et al.  Complete description of derivations on -compact operators for type I von Neumann algebras , 2008, 0807.4316.

[19]  S. Kuzhel On pseudo-Hermitian operators with generalized $\mathcal{C}$-symmetries , 2008, 0802.4269.

[20]  H. Korsch,et al.  A non-Hermitian symmetric Bose–Hubbard model: eigenvalue rings from unfolding higher-order exceptional points , 2008, 0802.3164.

[21]  M. Znojil,et al.  -symmetric deformations of Calogero models , 2008, 0802.0624.

[22]  A. Fring,et al.  Metrics and isospectral partners for the most generic cubic -symmetric non-Hermitian Hamiltonian , 2007, 0708.2403.

[23]  M. Znojil Quantum toboggans with two branch points , 2007, 0708.0087.

[24]  A. Smilga Cryptogauge symmetry and cryptoghosts for crypto-Hermitian Hamiltonians , 2007, 0706.4064.

[25]  S. Albeverio,et al.  On an algebra of operators related to flnite traces on a von Neumann algebra , 2008 .

[26]  S. Albeverio,et al.  On classification of singular measures and fractal properties of quasi-self-affine measures in R 2 , 2008 .

[27]  J. Sjöstrand,et al.  symmetric non-self-adjoint operators, diagonalizable and non-diagonalizable, with a real discrete spectrum , 2007 .

[28]  D. Krejčiřík,et al.  $$\mathcal {PT}$$ -Symmetric Waveguides , 2007, 0707.3039.

[29]  E.Caliceti,et al.  $PT$ symmetric non-selfadjoint operators, diagonalizable and non-diagonalizable, with real discrete spectrum , 2007, 0705.4218.

[30]  M. Znojil Conditional observability , 2007, 0704.3812.

[31]  I. Rotter,et al.  Projective Hilbert space structures at exceptional points , 2007, 0704.1291.

[32]  Carl M. Bender,et al.  Making sense of non-Hermitian Hamiltonians , 2007, hep-th/0703096.

[33]  Tobias Finis,et al.  ON THE SPECTRAL SIDE OF ARTHUR’S TRACE FORMULA II , 2007 .

[34]  H. B. Geyer,et al.  The Physics of Non-Hermitian Operators , 2006 .

[35]  F. Cannata,et al.  Perturbation theory of {\cal P}{\cal T} symmetric Hamiltonians , 2006, math-ph/0607039.

[36]  Toshiaki Tanaka General aspects of PT -symmetric and P-self-adjoint quantum theory in a Krein space , 2006, hep-th/0605035.

[37]  F. Scholtz,et al.  Moyal products -- a new perspective on quasi-hermitian quantum mechanics , 2006, quant-ph/0602187.

[38]  C. Bender,et al.  Classical trajectories for complex Hamiltonians , 2006, math-ph/0602040.

[39]  C. Bender,et al.  Calculation of the hidden symmetry operator for a -symmetric square well , 2006, quant-ph/0601123.

[40]  A. Mostafazadeh Metric Operator in Pseudo-Hermitian Quantum Mechanics and the Imaginary Cubic Potential , 2005, quant-ph/0508195.

[41]  Stephan Ramon Garcia,et al.  Complex Symmetric Operators and Applications II , 2005 .

[42]  S. Albeverio,et al.  One-dimensional Schrödinger operators with -symmetric zero-range potentials , 2005 .

[43]  M. Znojil,et al.  MHD α2-dynamo, Squire equation and PT-symmetric interpolation between square well and harmonic oscillator , 2005, math-ph/0501069.

[44]  John Ellis,et al.  Int. J. Mod. Phys. , 2005 .

[45]  H. B. Geyer,et al.  CPT - conserving Hamiltonians and their nonlinear supersymmetrization using differential charge-operators C , 2004, hep-th/0412211.

[46]  H. Langer,et al.  A Krein Space Approach to PT-symmetry , 2004 .

[47]  C. Bender Calculating the C Operator in PT-symmetric Quantum Mechanics , 2004 .

[48]  C. Bender,et al.  Semiclassical calculation of the C operator in PT -symmetric quantum mechanics , 2004, hep-th/0405113.

[49]  S. Albeverio,et al.  Pseudo-Hermiticity and Theory of Singular Perturbations , 2004 .

[50]  C. Bender,et al.  Complex extension of quantum mechanics. , 2002, Physical review letters.

[51]  M. Znojil,et al.  The interplay of supersymmetry and PT symmetry in quantum mechanics: A case study for the Scarf II potential , 2002, quant-ph/0206013.

[52]  A. Mostafazadeh Pseudo-supersymmetric quantum mechanics and isospectral pseudo-Hermitian Hamiltonians , 2002, math-ph/0203041.

[53]  S. Fei,et al.  Point Interactions: $$\mathcal{P}\mathcal{T}$$ -Hermiticity and Reality of the Spectrum , 2002 .

[54]  Pseudo-Hermiticity versus PT-symmetry. II. A complete characterization of non-Hermitian Hamiltonians with a real spectrum , 2001, math-ph/0110016.

[55]  G. Japaridze Space of state vectors in -symmetric quantum mechanics , 2001 .

[56]  R. Tateo,et al.  Bethe Ansatz equations , and reality properties in PT-symmetric quantum mechanics , 2022 .

[57]  S. Albeverio,et al.  Scattering Theory for Quantum Fields¶with Indefinite Metric , 2001, math-ph/0501031.

[58]  Sergio Albeverio,et al.  Singular perturbations of differential operators : solvable Schrödinger type operators , 2000 .

[59]  Sergio Albeverio,et al.  Singular Perturbations of Differential Operators , 2000 .

[60]  C. Bender,et al.  PT-symmetric quantum mechanics , 1998, 2312.17386.

[61]  Orsay,et al.  SUSY Quantum Mechanics with Complex Superpotentials and Real Energy Spectra , 1998, quant-ph/9806019.

[62]  C. Bender,et al.  Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry , 1997, physics/9712001.

[63]  S. Kuzhel,et al.  Regular extensions of Hermitian operators , 1998 .

[64]  J. Dankovicová Czech , 1997, Journal of the International Phonetic Association.

[65]  H. Langer,et al.  Operator theory and ordinary differential operators , 1995 .

[66]  S. Benvegnù,et al.  Relativistic point interaction , 1994 .

[67]  F. Scholtz,et al.  Quasi-Hermitian operators in quantum mechanics and the variational principle , 1992 .

[68]  T. Azizov,et al.  Linear Operators in Spaces with an Indefinite Metric , 1989 .

[69]  Sergio Albeverio,et al.  Solvable Models in Quantum Mechanics , 1988 .

[70]  A. W. Knapp Lie groups beyond an introduction , 1988 .

[71]  F. Gesztesy,et al.  New analytically solvable models of relativistic point interactions , 1987 .

[72]  Hans L. Cycon,et al.  Schrodinger Operators: With Application to Quantum Mechanics and Global Geometry , 1987 .

[73]  D. Race The theory of J-selfadjoint extensions of J-symmetric operators , 1985 .

[74]  I. Knowles On the boundary conditions characterizing J-selfadjoint extensions of J-symmetric operators , 1981 .

[75]  J. Dieudonne,et al.  Encyclopedic Dictionary of Mathematics , 1979 .

[76]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[77]  N. Vilenkin Special Functions and the Theory of Group Representations , 1968 .

[78]  I. M. Glazman Direct methods of qualitative spectral analysis of singular differential operators , 1965 .

[79]  W. Pauli On Dirac's New Method of Field Quantization , 1943 .

[80]  Paul Adrien Maurice Dirac,et al.  Bakerian Lecture - The physical interpretation of quantum mechanics , 1942, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.