High-resolution spectroscopy of single nuclear spins via sequential weak measurements

[1]  N. Kalb,et al.  One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment , 2018, Nature Communications.

[2]  Ronald L. Walsworth,et al.  High-resolution magnetic resonance spectroscopy using a solid-state spin sensor , 2017, Nature.

[3]  J. P. Dehollain,et al.  Coherent control via weak measurements in P31 single-atom electron and nuclear spin qubits , 2017, Physical Review B.

[4]  F. Jelezko,et al.  Quantum spectroscopy of single spins assisted by a classical clock , 2016, Physical Review A.

[5]  J. Wrachtrup,et al.  Nanoscale nuclear magnetic resonance with chemical resolution , 2017, Science.

[6]  Jan Meijer,et al.  Submillihertz magnetic spectroscopy performed with a nanoscale quantum sensor , 2017, Science.

[7]  C. Degen,et al.  Quantum sensing with arbitrary frequency resolution , 2017, Science.

[8]  Heng Fan,et al.  Single-Shot Readout of a Nuclear Spin Weakly Coupled to a Nitrogen-Vacancy Center at Room Temperature. , 2016, Physical review letters.

[9]  J. Wrachtrup,et al.  Nonvolatile nuclear spin memory enables sensor-unlimited nanoscale spectroscopy of small spin clusters , 2016, Nature Communications.

[10]  A Tosi,et al.  Measuring Incompatible Observables by Exploiting Sequential Weak Values. , 2016, Physical review letters.

[11]  A quantum spectrum analyzer enhanced by a nuclear spin memory , 2016, 1610.03253.

[12]  Ren-Bao Liu,et al.  Angstrom-Resolution Magnetic Resonance Imaging of Single Molecules via Wave-Function Fingerprints of Nuclear Spins , 2015, 1510.04081.

[13]  Jiangfeng Du,et al.  Towards chemical structure resolution with nanoscale nuclear magnetic resonance spectroscopy , 2015, 1506.05882.

[14]  M. Lukin,et al.  Efficient readout of a single spin state in diamond via spin-to-charge conversion. , 2014, Physical review letters.

[15]  D. Awschalom,et al.  Probing surface noise with depth-calibrated spins in diamond. , 2014, Physical review letters.

[16]  C. Degen,et al.  Nanoscale nuclear magnetic resonance with a 1.9-nm-deep nitrogen-vacancy sensor , 2013, 1312.2394.

[17]  D. J. Twitchen,et al.  Manipulating a qubit through the backaction of sequential partial measurements and real-time feedback , 2013, Nature Physics.

[18]  C. Macklin,et al.  Observing single quantum trajectories of a superconducting quantum bit , 2013, Nature.

[19]  F. Dolde,et al.  High-resolution correlation spectroscopy of 13C spins near a nitrogen-vacancy centre in diamond , 2013, Nature Communications.

[20]  T Picot,et al.  Partial-measurement backaction and nonclassical weak values in a superconducting circuit. , 2013, Physical review letters.

[21]  J. Meijer,et al.  Nuclear Magnetic Resonance Spectroscopy on a (5-Nanometer)3 Sample Volume , 2013, Science.

[22]  D. Rugar,et al.  Nanoscale Nuclear Magnetic Resonance with a Nitrogen-Vacancy Spin Sensor , 2013, Science.

[23]  R. J. Schoelkopf,et al.  Quantum Back-Action of an Individual Variable-Strength Measurement , 2013, Science.

[24]  F. Jelezko,et al.  Photo-induced ionization dynamics of the nitrogen vacancy defect in diamond investigated by single-shot charge state detection , 2012, 1209.0268.

[25]  J. Cirac,et al.  Room-Temperature Quantum Bit Memory Exceeding One Second , 2012, Science.

[26]  T. Taminiau,et al.  Detection and control of individual nuclear spins using a weakly coupled electron spin. , 2012, Physical review letters.

[27]  M. Markham,et al.  Sensing single remote nuclear spins. , 2012, Nature nanotechnology.

[28]  S. Bennett,et al.  Sensing distant nuclear spins with a single electron spin. , 2012, Physical review letters.

[29]  Dieter Suter,et al.  Robust dynamical decoupling for quantum computing and quantum memory. , 2011, Physical review letters.

[30]  Matthias Steiner,et al.  Single-Shot Readout of a Single Nuclear Spin , 2010, Science.

[31]  J. S. Hodges,et al.  Repetitive Readout of a Single Electronic Spin via Quantum Logic with Nuclear Spin Ancillae , 2009, Science.

[32]  Shengjun Wu,et al.  Weak measurements with a qubit meter , 2009, 0909.0841.

[33]  A. Jordan,et al.  Qubit feedback and control with kicked quantum nondemolition measurements: A quantum Bayesian analysis , 2006, cond-mat/0606676.

[34]  A. Jordan,et al.  Quantum nondemolition measurement of a kicked qubit , 2004, cond-mat/0406529.

[35]  Howard Mark Wiseman,et al.  Weak values, quantum trajectories, and the cavity-QED experiment on wave-particle correlation , 2002 .

[36]  H. Wiseman Weak values, quantum trajectories, and the Stony-Brook cavity QED experiment , 2001, QELS 2002.

[37]  A. Korotkov Selective quantum evolution of a qubit state due to continuous measurement , 2000, cond-mat/0008461.

[38]  A. Korotkov Output spectrum of a detector measuring quantum oscillations , 2000, cond-mat/0003225.

[39]  R. Onofrio,et al.  Measurement Quantum Mechanics and Experiments on Quantum Zeno Effect , 1996, cond-mat/9603182.

[40]  Wineland,et al.  Quantum Zeno effect. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[41]  Vaidman,et al.  How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. , 1988, Physical review letters.