On the Origin of Diffuse Ionized Gas in the Antennae Galaxy

The "Antennae Galaxy" (NGC 4038/39) is the closest major interacting galaxy system and therefore often taken as merger prototype. We present the first comprehensive integral field spectroscopic dataset of this system, observed with the MUSE instrument at the ESO VLT. We cover the two regions in this system which exhibit recent star-formation: the central galaxy interaction and a region near the tip of the southern tidal tail. In these fields, we detect HII regions and diffuse ionized gas to unprecedented depth. About 15% of the ionized gas was undetected by previous observing campaigns. This newly detected faint ionized gas is visible everywhere around the central merger, and shows filamentary structure. We estimate diffuse gas fractions of about 60% in the central field and 10% in the southern region. We are able to show that the southern region contains a significantly different population of HII regions, showing fainter luminosities. By comparing HII region luminosities with the HST catalog of young star clusters in the central field, we estimate that there is enough Lyman-continuum leakage in the merger to explain the amount of diffuse ionized gas that we detect. We compare the Lyman-continuum escape fraction of each HII region against ionization-parameter sensitive emission line ratios. While we find no systematic trend between these properties, the most extreme line ratios seem to be strong indicators of density bounded ionization. Extrapolating the Lyman-continuum escape fractions to the southern region, we conclude that just from the comparison of the young stellar populations to the ionized gas there is no need to invoke other ionization mechanisms than Lyman-continuum leaking HII regions for the diffuse ionized gas in the Antennae.

[1]  P. Weilbacher,et al.  P3D: a general data-reduction tool for fiber-fed integral-field spectrographs , 2010, 1002.4406.

[2]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[3]  Christopher J. Conselice,et al.  The Relationship between Stellar Light Distributions of Galaxies and Their Formation Histories , 2003 .

[4]  Andreas Kelz,et al.  A MUSE map of the central Orion Nebula (M 42) , 2015, 1507.00006.

[5]  C. Morisset,et al.  Excitation properties of galaxies with the highest [OIII]/[OII] ratios: No evidence for massive escape of ionizing photons , 2015, 1503.00320.

[6]  M. Dopita,et al.  Spectral Signatures of Fast Shocks. II. Optical Diagnostic Diagrams , 1995 .

[7]  Elisabet Leitet,et al.  Escape of Lyman continuum radiation from local galaxies - Detection of leakage from the young starburst Tol 1247-232 , 2013, 1302.6971.

[8]  E. Salpeter The Luminosity function and stellar evolution , 1955 .

[9]  A. Leroy,et al.  ALMA OBSERVATIONS OF THE ANTENNAE GALAXIES. I. A NEW WINDOW ON A PROTOTYPICAL MERGER , 2014, 1410.4473.

[10]  H Germany,et al.  VLT-VIMOS integral field spectroscopy of luminous and ultraluminous infrared galaxies - II. Evidence for shock ionization caused by tidal forces in the extra-nuclear regions of interacting and merging LIRGs , 2010, 1004.3933.

[11]  L. Armus,et al.  THE EMISSION-LINE SPECTRA OF MAJOR MERGERS: EVIDENCE FOR SHOCKED OUTFLOWS , 2012, 1205.0083.

[12]  A. Bolatto,et al.  DENSE GAS FRACTION AND STAR FORMATION EFFICIENCY VARIATIONS IN THE ANTENNAE GALAXIES , 2015, 1510.05680.

[13]  The origin of the ionization of the diffuse ionized gas in spirals - II. Modelling the distribution of ionizing radiation in NGC 157 , 2001, astro-ph/0108135.

[14]  R. Kudritzki,et al.  RED SUPERGIANTS AS COSMIC ABUNDANCE PROBES: THE FIRST DIRECT METALLICITY DETERMINATION OF NGC 4038 IN THE ANTENNAE , 2015, 1509.04937.

[15]  Pavel Kroupa The Initial Mass Function of Stars: Evidence for Uniformity in Variable Systems , 2002, Science.

[16]  U. Munari,et al.  An extensive library of 2500–10 500 Å synthetic spectra , 2005 .

[17]  R. Cid Fernandes,et al.  The ionized gas in the CALIFA early-type galaxies I. Mapping two representative cases: NGC 6762 and NGC 5966 , 2012, 1202.0511.

[18]  M. Ouchi,et al.  Ionization state of inter-stellar medium in galaxies: evolution, SFR-M * -Z dependence, and ionizing photon escape , 2013, 1309.0207.

[19]  R. Walterbos,et al.  Detection of [O I] λ6300 and Other Diagnostic Emission Lines in the Diffuse Ionized Gas of M33 with Gemini-North , 2006, astro-ph/0605238.

[20]  T. Naab,et al.  ONE MOMENT IN TIME—MODELING STAR FORMATION IN THE ANTENNAE , 2010, 1003.0685.

[21]  S. Willner,et al.  Shocked molecular hydrogen in NGC 4038/4039, 'the antennae' , 1989 .

[22]  M. Oey,et al.  THE ORIGIN AND OPTICAL DEPTH OF IONIZING RADIATION IN THE “GREEN PEA” GALAXIES , 2013, 1301.0530.

[23]  C. Leitherer,et al.  A LIBRARY OF THEORETICAL ULTRAVIOLET SPECTRA OF MASSIVE, HOT STARS FOR EVOLUTIONARY SYNTHESIS , 2010, 1006.5624.

[24]  S. M. Fall,et al.  Space Telescope Imaging Spectrograph Observations of Young Star Clusters in the Antennae Galaxies (NGC 4038/4039) , 2005 .

[25]  S. Cole,et al.  Merger rates in hierarchical models of galaxy formation , 1993 .

[26]  Christophe Morisset,et al.  PyNeb: a new tool for analyzing emission lines - I. Code description and validation of results , 2014, 1410.6662.

[27]  J. Kamenetzky,et al.  HERSCHEL-SPIRE FOURIER TRANSFORM SPECTROMETER OBSERVATIONS OF EXCITED CO AND [C i] IN THE ANTENNAE (NGC 4038/39): WARM AND COLD MOLECULAR GAS , 2013, 1312.2522.

[28]  J. Graham,et al.  High-resolution Infrared Spectroscopy of Winds from Super Star Clusters 1,2 , 2022 .

[29]  P. Duc,et al.  Tidal dwarf candidates in a sample of interacting galaxies , 2000, astro-ph/0210393.

[30]  S. White,et al.  The EAGLE project: Simulating the evolution and assembly of galaxies and their environments , 2014, 1407.7040.

[31]  J. Mathis,et al.  The Warm Ionized Medium in the Milky Way and Other Galaxies , 2000, astro-ph/0010191.

[32]  A. Toomre,et al.  Galactic Bridges and Tails , 1972 .

[33]  Observatoire de la Côte d'Azur,et al.  Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties , 2016, 1609.04172.

[34]  University of Cambridge,et al.  Analysing observed star cluster SEDs with evolutionary synthesis models: systematic uncertainties , 2003, astro-ph/0309356.

[35]  J. Falc'on-Barroso,et al.  MIUSCAT: extended MILES spectral coverage – I. Stellar population synthesis models , 2012, 1205.5496.

[36]  F. Bournaud,et al.  A parsec-resolution simulation of the Antennae galaxies: formation of star clusters during the merger , 2014, 1410.5754.

[37]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[38]  Denis Foo Kune,et al.  Starburst99: Synthesis Models for Galaxies with Active Star Formation , 1999, astro-ph/9902334.

[39]  J. Fensch,et al.  Ionization processes in a local analogue of distant clumpy galaxies: VLT MUSE IFU spectroscopy and FORS deep images of the TDG NGC 5291N , 2015, 1509.08873.

[40]  B. Whitmore,et al.  THE AGE, MASS, AND SIZE DISTRIBUTIONS OF STAR CLUSTERS IN M51 , 2016 .

[41]  Peter Weilbacher,et al.  galev evolutionary synthesis models – I. Code, input physics and web interface , 2009, 0903.0378.

[42]  J. Hibbard,et al.  UV Morphology and Star Formation in the Tidal Tails of NGC 4038/39 ('The Antennae') , 2004, astro-ph/0411352.

[43]  D. Schaerer,et al.  Eight per cent leakage of Lyman continuum photons from a compact, star-forming dwarf galaxy , 2016, Nature.

[44]  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[45]  R. Walterbos,et al.  A RE-EXAMINATION OF OBSERVED AND PREDICTED STELLAR IONIZING FLUXES IN THE LARGE MAGELLANIC CLOUD , 2008 .

[46]  Young star cluster complexes in NGC 4038/39 - Integral field spectroscopy using VIMOS-VLT , 2005, astro-ph/0509249.

[47]  C. Leitherer,et al.  THE EFFECTS OF STELLAR ROTATION. I. IMPACT ON THE IONIZING SPECTRA AND INTEGRATED PROPERTIES OF STELLAR POPULATIONS , 2012, 1203.5109.

[48]  E. Pellegrini,et al.  THE OPTICAL DEPTH OF H ii REGIONS IN THE MAGELLANIC CLOUDS , 2012, 1202.3334.

[49]  J. Brinchmann,et al.  The MUSE Hubble Ultra Deep Field Survey. IX. Evolution of galaxy merger fraction since z~6 , 2017, 1711.00423.

[50]  A Multiwavelength Optical Emission Line Survey of Warm Ionized Gas in the Galaxy , 2006, astro-ph/0609558.

[51]  M. Rees,et al.  Core condensation in heavy halos: a two-stage theory for galaxy formation and clustering , 1978 .

[52]  H Germany,et al.  PMAS optical integral field spectroscopy of luminous infrared galaxies - II. Spatially resolved stellar populations and excitation conditions, , 2010, 1006.2219.

[53]  R. J. Reynolds,et al.  The warm ionized medium in spiral galaxies , 2009, 0901.0941.

[54]  European Southern Observatory,et al.  THE ANTENNAE GALAXIES (NGC 4038/4039) REVISITED: ADVANCED CAMERA FOR SURVEYS AND NICMOS OBSERVATIONS OF A PROTOTYPICAL MERGER , 2010, 1005.0629.

[55]  S. Veilleux,et al.  A DEEPER LOOK AT FAINT Hα EMISSION IN NEARBY DWARF GALAXIES , 2016, 1601.00201.

[56]  Rosemary F. G. Wyse,et al.  Accepted for Publication in the Astronomical Journal THE SPECTACULAR IONIZED INTERSTELLAR MEDIUM OF NGC 55 , 1996 .

[57]  M. Steinmetz,et al.  The hierarchical origin of galaxy morphologies , 2002, astro-ph/0202466.

[58]  D. Sanders,et al.  LUMINOUS INFRARED GALAXIES , 1996 .

[59]  Michele Cappellari,et al.  Adaptive spatial binning of integral-field spectroscopic data using Voronoi tessellations , 2003, astro-ph/0302262.

[60]  T. Heckman,et al.  An X-Ray and Optical Study of the Dwarf Galaxy NGC 1569: Evidence for a Starburst-driven Outflow , 1995 .

[61]  M. Bershady,et al.  SDSS-IV MaNGA : the impact of diffuse ionized gas on emission-line ratios, interpretation of diagnostic diagrams and gas metallicity measurements , 2016, 1612.02000.

[62]  N. Bastian,et al.  Constraining the escape fraction of ionizing photons from H II regions within NGC 300: A concept paper , 2016, 1606.01144.

[63]  K. Sellgren,et al.  Stellar Populations in NGC 4038/39 (the Antennae): Exploring a Galaxy Merger Pixel by Pixel , 2003, astro-ph/0306325.

[64]  Wendy L. Freedman,et al.  A NEW DISTANCE TO THE ANTENNAE GALAXIES (NGC 4038/39) BASED ON THE TYPE Ia SUPERNOVA 2007sr , 2008, 0807.3955.

[65]  L. Kewley,et al.  Theoretical Modeling of Starburst Galaxies , 2001, astro-ph/0106324.

[66]  The FORS Deep Field: Field selection, photometric observations and photometric catalog , , 2002, astro-ph/0211044.

[67]  Claus Leitherer,et al.  Direct Detection of Lyman Continuum Escape from Local Starburst Galaxies with the Cosmic Origins Spectrograph , 2016 .

[68]  Morgan Fouesneau,et al.  Accounting for stochastic fluctuations when analysing the integrated light of star clusters. I. First systematics , 2010, 1003.2334.

[69]  A. J. Cenarro,et al.  An updated MILES stellar library and stellar population models , 2011, 1107.2303.

[70]  B. Garc'ia-Lorenzo,et al.  Two physical regimes for the giant H ii regions and giant molecular clouds in the Antennae galaxies , 2014, 1409.1251.

[71]  U. Maryland,et al.  NEW CONSTRAINTS ON THE ESCAPE OF IONIZING PHOTONS FROM STARBURST GALAXIES USING IONIZATION-PARAMETER MAPPING , 2013, 1311.2227.

[72]  S. Eikenberry,et al.  Deep Near-Infrared Imaging and Photometry of the Antennae Galaxies with WIRC , 2005, astro-ph/0509132.

[73]  Eric Emsellem,et al.  Parametric Recovery of Line‐of‐Sight Velocity Distributions from Absorption‐Line Spectra of Galaxies via Penalized Likelihood , 2003, astro-ph/0312201.

[74]  B. Whitmore,et al.  ANALYZING STAR CLUSTER POPULATIONS WITH STOCHASTIC MODELS: THE HUBBLE SPACE TELESCOPE/WIDE FIELD CAMERA 3 SAMPLE OF CLUSTERS IN M83 , 2012, 1202.3135.

[75]  Czech Republic,et al.  Detection of high Lyman continuum leakage from four low-redshift compact star-forming galaxies , 2016, 1605.05160.

[76]  Christer Sandin,et al.  The influence of diffuse scattered light I. The PSF and its role in observations of the edge-on galaxy NGC 5907 , 2014, 1406.5508.

[77]  L. Wisotzki,et al.  Nebular emission and the Lyman continuum photon escape fraction in CALIFA early-type galaxies , 2013, 1306.2338.

[78]  L. Kewley,et al.  GALAXY-WIDE SHOCKS IN LATE-MERGER STAGE LUMINOUS INFRARED GALAXIES , 2011, 1104.1177.

[79]  Linda J. Smith,et al.  Realistic ionizing fluxes for young stellar populations from 0.05 to 2 Z , 2002, astro-ph/0207554.

[80]  Star-formation in NGC 4038/4039 from broad and narrow band photometry: Cluster destruction? , 2005, astro-ph/0505445.

[81]  R. Walterbos,et al.  Optical Spectroscopy and Ionization Models of the Diffuse Ionized Gas in M33, M51/NGC 5195, and M81 , 2003 .

[82]  H. Rottgering,et al.  Gas-rich mergers and feedback are ubiquitous amongst starbursting radio galaxies, as revealed by the VLA, IRAM PdBI and Herschel , 2012, Monthly Notices of the Royal Astronomical Society.

[83]  P. P. van der Werf,et al.  SPITZER-IRS STUDY OF THE ANTENNAE GALAXIES NGC 4038/39 , 2009, 0905.1058.

[84]  Christer Sandin,et al.  The influence of diffuse scattered light II. Observations of galaxy haloes and thick discs and hosts of blue compact galaxies , 2015, 1502.07244.

[85]  V. Rubin,et al.  EMISSION-LINE INTENSITIES AND RADIAL VELOCITIES IN THE INTERACTING GALAXIES NGC 4038--4039. , 1970 .

[86]  T. Heckman,et al.  Ionized gas in the halos of edge-on starburst galaxies: Evidence for supernova-driven superwinds , 1996 .

[87]  A. Faisst REVISITING THE LYMAN CONTINUUM ESCAPE CRISIS: PREDICTIONS FOR z > 6 FROM LOCAL GALAXIES , 2016, 1605.06507.

[88]  R. Kotulla,et al.  STOCHASTIC STELLAR CLUSTER INITIAL MASS FUNCTIONS: MODELS AND IMPACT ON INTEGRATED CLUSTER PARAMETER DETERMINATION , 2013, 1310.4936.

[89]  S. M. Fall,et al.  The Luminosity Function of Young Star Clusters in “the Antennae” Galaxies (NGC 4038/4039) , 1999, astro-ph/9907430.

[90]  R. Walterbos,et al.  A Hubble Space Telescope WFPC2 Investigation of the Disk-Halo Interface in NGC 891* , 2004, astro-ph/0405401.

[91]  M. Klaas Exceptional H2 emission in the Antennae galaxies: Pre-starburst shocks from the galaxy collision , 2005, astro-ph/0502464.

[92]  V. Springel,et al.  Introducing the Illustris Project: simulating the coevolution of dark and visible matter in the Universe , 2014, 1405.2921.

[93]  B. Groves,et al.  CHARACTERIZING SPIRAL ARM AND INTERARM STAR FORMATION , 2016, 1603.08009.

[94]  J. Hibbard,et al.  High-Resolution H I Mapping of NGC 4038/39 (“The Antennae”) and Its Tidal Dwarf Galaxy Candidates , 2001, astro-ph/0110581.

[95]  Peter Anders,et al.  Spectral and photometric evolution of young stellar populations: The impact of gaseous emission at various metallicities , 2003, astro-ph/0302146.

[96]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae , 1976 .

[97]  Cambridge,et al.  GEMINI SPECTROSCOPIC SURVEY OF YOUNG STAR CLUSTERS IN MERGING/INTERACTING GALAXIES. III. THE ANTENNAE , 2006, astro-ph/0612136.