Reconstructing transcriptional regulatory networks through genomics data

One central problem in biology is to understand how gene expression is regulated under different conditions. Microarray gene expression data and other high throughput data have made it possible to dissect transcriptional regulatory networks at the genomics level. Owing to the very large number of genes that need to be studied, the relatively small number of data sets available, the noise in the data and the different natures of the distinct data types, network inference presents great challenges. In this article, we review statistical and computational methods that have been developed in the last decade in response to genomics data for inferring transcriptional regulatory networks.

[1]  Sach Mukherjee,et al.  Network inference using informative priors , 2008, Proceedings of the National Academy of Sciences.

[2]  Mario Medvedovic,et al.  Bayesian hierarchical model for transcriptional module discovery by jointly modeling gene expression and ChIP-chip data , 2007, BMC Bioinformatics.

[3]  T. Bailey,et al.  High-throughput chromatin information enables accurate tissue-specific prediction of transcription factor binding sites , 2008, Nucleic acids research.

[4]  Rachel B. Brem,et al.  Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks , 2008, Nature Genetics.

[5]  D. Botstein,et al.  Genomic expression programs in the response of yeast cells to environmental changes. , 2000, Molecular biology of the cell.

[6]  Feng Gao,et al.  Defining transcriptional networks through integrative modeling of mRNA expression and transcription factor binding data , 2004, BMC Bioinformatics.

[7]  A. Gerber,et al.  Post-transcriptional gene regulation: From genome-wide studies to principles , 2007, Cellular and Molecular Life Sciences.

[8]  Nir Friedman,et al.  Inferring quantitative models of regulatory networks from expression data , 2004, ISMB/ECCB.

[9]  Tianwei Yu,et al.  Inference of transcriptional regulatory network by two-stage constrained space factor analysis , 2005, Bioinform..

[10]  A. Mortazavi,et al.  Genome-Wide Mapping of in Vivo Protein-DNA Interactions , 2007, Science.

[11]  Bing Li,et al.  The Role of Chromatin during Transcription , 2007, Cell.

[12]  Chiara Sabatti,et al.  Bayesian sparse hidden components analysis for transcription regulation networks , 2005, Bioinform..

[13]  Emmitt R. Jolly,et al.  Inference of combinatorial regulation in yeast transcriptional networks: a case study of sporulation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Jun S Liu,et al.  Bayesian biclustering of gene expression data , 2008, BMC Genomics.

[15]  Lorenz Wernisch,et al.  Factor analysis for gene regulatory networks and transcription factor activity profiles , 2007, BMC Bioinformatics.

[16]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Dustin E. Schones,et al.  Genome-wide approaches to studying chromatin modifications , 2008, Nature Reviews Genetics.

[18]  D. Pe’er,et al.  Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data , 2003, Nature Genetics.

[19]  M. Gerstein,et al.  RNA-Seq: a revolutionary tool for transcriptomics , 2009, Nature Reviews Genetics.

[20]  D. Botstein,et al.  Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF , 2001, Nature.

[21]  Reinhard Laubenbacher,et al.  Comparison of Reverse‐Engineering Methods Using an in Silico Network , 2007, Annals of the New York Academy of Sciences.

[22]  Stuart A. Kauffman,et al.  On the Sparse Reconstruction of Gene Networks , 2008, J. Comput. Biol..

[23]  Claudio Altafini,et al.  Comparing association network algorithms for reverse engineering of large-scale gene regulatory networks: synthetic versus real data , 2007, Bioinform..

[24]  Tommi S. Jaakkola,et al.  Using Graphical Models and Genomic Expression Data to Statistically Validate Models of Genetic Regulatory Networks , 2000, Pacific Symposium on Biocomputing.

[25]  H. Bussemaker,et al.  Regulatory element detection using correlation with expression , 2001, Nature Genetics.

[26]  N. D. Clarke,et al.  DIP-chip: rapid and accurate determination of DNA-binding specificity. , 2005, Genome research.

[27]  Jiguo Cao,et al.  Estimating dynamic models for gene regulation networks , 2008, Bioinform..

[28]  Hidde de Jong,et al.  Structural Identification of Piecewise-Linear Models of Genetic Regulatory Networks , 2008, J. Comput. Biol..

[29]  Hongzhe Li,et al.  Group SCAD regression analysis for microarray time course gene expression data , 2007, Bioinform..

[30]  Liang Chen,et al.  Integrating mRNA Decay Information into Co-Regulation Study , 2005, Journal of Computer Science and Technology.

[31]  Sui Huang,et al.  Heuristic Approach to Sparse Approximation of Gene Regulatory Networks , 2008, J. Comput. Biol..

[32]  Chris Wiggins,et al.  ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context , 2004, BMC Bioinformatics.

[33]  Jun S. Liu,et al.  An algorithm for finding protein–DNA binding sites with applications to chromatin-immunoprecipitation microarray experiments , 2002, Nature Biotechnology.

[34]  Hongyu Zhao,et al.  DNA-protein binding and gene expression patterns , 2003 .

[35]  Jun S. Liu,et al.  Integrating regulatory motif discovery and genome-wide expression analysis , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Katherine C. Chen,et al.  Integrative analysis of cell cycle control in budding yeast. , 2004, Molecular biology of the cell.

[37]  Eric H Davidson,et al.  Modeling the dynamics of transcriptional gene regulatory networks for animal development. , 2009, Developmental biology.

[38]  David J. Reiss,et al.  Integrated biclustering of heterogeneous genome-wide datasets for the inference of global regulatory networks , 2006, BMC Bioinformatics.

[39]  J. Winderickx,et al.  Inferring transcriptional modules from ChIP-chip, motif and microarray data , 2006, Genome Biology.

[40]  Marco Grzegorczyk,et al.  Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical gaussian models and bayesian networks , 2006, Bioinform..

[41]  Richard Bonneau,et al.  The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo , 2006, Genome Biology.

[42]  D. R. Goldstein,et al.  Science and Statistics: A Festschrift for Terry Speed , 2003 .

[43]  R. Young,et al.  Rapid analysis of the DNA-binding specificities of transcription factors with DNA microarrays , 2004, Nature Genetics.

[44]  W. Wong,et al.  Learning Causal Bayesian Network Structures From Experimental Data , 2008 .

[45]  Fang-Xiang Wu,et al.  Modeling Gene Expression from Microarray Expression Data with State-Space Equations , 2003, Pacific Symposium on Biocomputing.

[46]  Hongyu Zhao,et al.  Statistical methods to infer cooperative binding among transcription factors in Saccharomyces cerevisiae , 2008, Bioinform..

[47]  N. D. Clarke,et al.  Rationalization of gene regulation by a eukaryotic transcription factor: calculation of regulatory region occupancy from predicted binding affinities. , 2002, Journal of molecular biology.

[48]  M. Savageau Biochemical systems analysis. II. The steady-state solutions for an n-pool system using a power-law approximation. , 1969, Journal of theoretical biology.

[49]  Mark J. van der Laan,et al.  A Statistical Method for Constructing Transcriptional Regulatory Networks Using Gene Expression and Sequence Data , 2005, J. Comput. Biol..

[50]  Nicola J. Rinaldi,et al.  Serial Regulation of Transcriptional Regulators in the Yeast Cell Cycle , 2001, Cell.

[51]  Allen D. Delaney,et al.  Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing , 2007, Nature Methods.

[52]  Satoru Miyano,et al.  Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models , 2008, Bioinform..

[53]  Roded Sharan,et al.  Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genomewide data. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Min Zou,et al.  A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data , 2005, Bioinform..

[55]  Pei Wang,et al.  Partial Correlation Estimation by Joint Sparse Regression Models , 2008, Journal of the American Statistical Association.

[56]  Yudong D. He,et al.  Functional Discovery via a Compendium of Expression Profiles , 2000, Cell.

[57]  Korbinian Strimmer,et al.  An empirical Bayes approach to inferring large-scale gene association networks , 2005, Bioinform..

[58]  Daphne Koller,et al.  Genome-wide discovery of transcriptional modules from DNA sequence and gene expression , 2003, ISMB.

[59]  Bernhard O. Palsson,et al.  Iterative Reconstruction of Transcriptional Regulatory Networks: An Algorithmic Approach , 2006, PLoS Comput. Biol..

[60]  Diego di Bernardo,et al.  Inference of gene regulatory networks and compound mode of action from time course gene expression profiles , 2006, Bioinform..

[61]  Ron Shamir,et al.  Multilevel Modeling and Inference of Transcription Regulation , 2004, J. Comput. Biol..

[62]  Arlindo L. Oliveira,et al.  Biclustering algorithms for biological data analysis: a survey , 2004, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[63]  Simon Rogers,et al.  A Bayesian regression approach to the inference of regulatory networks from gene expression data , 2005, Bioinform..

[64]  George M. Church,et al.  Biclustering of Expression Data , 2000, ISMB.

[65]  Dirk Husmeier,et al.  Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks , 2003, Bioinform..

[66]  Michael Ruogu Zhang,et al.  Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. , 1998, Molecular biology of the cell.

[67]  Fengzhu Sun,et al.  Inferring activity changes of transcription factors by binding association with sorted expression profiles , 2007, BMC Bioinform..

[68]  Zheng Li,et al.  Using a state-space model with hidden variables to infer transcription factor activities , 2006, Bioinform..

[69]  Zoubin Ghahramani,et al.  Modeling T-cell activation using gene expression profiling and state-space models , 2004, Bioinform..

[70]  Jesper Tegnér,et al.  Reverse engineering gene networks using singular value decomposition and robust regression , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[71]  Megan F. Cole,et al.  Control of Developmental Regulators by Polycomb in Human Embryonic Stem Cells , 2006, Cell.

[72]  Hiroyuki Toh,et al.  Inference of a genetic network by a combined approach of cluster analysis and graphical Gaussian modeling , 2002, Bioinform..

[73]  Ning Sun,et al.  Bayesian error analysis model for reconstructing transcriptional regulatory networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[74]  Neil D. Lawrence,et al.  Probabilistic inference of transcription factor concentrations and gene-specific regulatory activities , 2006, Bioinform..

[75]  Bor-Sen Chen,et al.  Quantitative characterization of the transcriptional regulatory network in the yeast cell cycle , 2004, Bioinform..

[76]  L. Kruglyak,et al.  Genetic Dissection of Transcriptional Regulation in Budding Yeast , 2002, Science.

[77]  Clifford A. Meyer,et al.  Genome-wide analysis of estrogen receptor binding sites , 2006, Nature Genetics.

[78]  A. Boulesteix,et al.  Predicting transcription factor activities from combined analysis of microarray and ChIP data: a partial least squares approach , 2005, Theoretical Biology and Medical Modelling.

[79]  D. Botstein,et al.  The transcriptional program of sporulation in budding yeast. , 1998, Science.

[80]  Hongzhe Li,et al.  Gradient directed regularization for sparse Gaussian concentration graphs, with applications to inference of genetic networks. , 2006, Biostatistics.

[81]  Xiang-Sun Zhang,et al.  Inferring transcriptional interactions and regulator activities from experimental data. , 2007, Molecules and cells.

[82]  Aurélien Mazurie,et al.  Gene networks inference using dynamic Bayesian networks , 2003, ECCB.

[83]  Rachel B. Brem,et al.  Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors , 2003, Nature Genetics.

[84]  John D. Storey,et al.  Precision and functional specificity in mRNA decay , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[85]  Sun-Chong Wang,et al.  Reconstructing Genetic Networks from Time Ordered Gene Expression Data Using Bayesian Method with Global Search Algorithm , 2004, J. Bioinform. Comput. Biol..

[86]  J. Collins,et al.  Inferring Genetic Networks and Identifying Compound Mode of Action via Expression Profiling , 2003, Science.

[87]  Raya Khanin,et al.  Bayesian model-based inference of transcription factor activity , 2007, BMC Bioinformatics.

[88]  V. Vinciotti,et al.  Statistical Reconstruction of Transcription Factor Activity Using Michaelis–Menten Kinetics , 2007, Biometrics.

[89]  Zoubin Ghahramani,et al.  A Bayesian approach to reconstructing genetic regulatory networks with hidden factors , 2005, Bioinform..

[90]  R. Stoughton,et al.  Genetics of gene expression surveyed in maize, mouse and man , 2003, Nature.

[91]  Daniel E. Zak,et al.  Importance of input perturbations and stochastic gene expression in the reverse engineering of genetic regulatory networks: insights from an identifiability analysis of an in silico network. , 2003, Genome research.

[92]  P. Bühlmann,et al.  Statistical Applications in Genetics and Molecular Biology Low-Order Conditional Independence Graphs for Inferring Genetic Networks , 2011 .

[93]  N. Meinshausen,et al.  High-dimensional graphs and variable selection with the Lasso , 2006, math/0608017.

[94]  Chiara Sabatti,et al.  Network component analysis: Reconstruction of regulatory signals in biological systems , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[95]  J. Hasty,et al.  Reverse engineering gene networks: Integrating genetic perturbations with dynamical modeling , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[96]  M. Savageau Biochemical systems analysis. II. The steady-state solutions for an n-pool system using a power-law approximation. , 1969, Journal of theoretical biology.

[97]  Richard Bonneau Learning biological networks: from modules to dynamics. , 2008, Nature chemical biology.

[98]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[99]  Nicola J. Rinaldi,et al.  Computational discovery of gene modules and regulatory networks , 2003, Nature Biotechnology.

[100]  S. Horvath,et al.  Statistical Applications in Genetics and Molecular Biology , 2011 .

[101]  Michal Linial,et al.  Using Bayesian Networks to Analyze Expression Data , 2000, J. Comput. Biol..

[102]  Eran Segal,et al.  Transient transcriptional responses to stress are generated by opposing effects of mRNA production and degradation , 2008, Molecular systems biology.

[103]  John J. Wyrick,et al.  Genome-wide location and function of DNA binding proteins. , 2000, Science.

[104]  Yoonsuck Choe,et al.  Structural systems identification of genetic regulatory networks , 2008, Bioinform..

[105]  Gustavo Stolovitzky,et al.  Reconstructing biological networks using conditional correlation analysis , 2005, Bioinform..

[106]  Hongzhe Li,et al.  Statistical Methods for Inference of Genetic Networks and Regulatory Modules , 2007 .

[107]  Mark Craven,et al.  Connecting quantitative regulatory-network models to the genome , 2007, ISMB/ECCB.

[108]  Cheng-Yan Kao,et al.  A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae , 2005, Bioinform..

[109]  K. Strimmer,et al.  Statistical Applications in Genetics and Molecular Biology A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics , 2011 .

[110]  C. Molony,et al.  Genetic analysis of genome-wide variation in human gene expression , 2004, Nature.

[111]  Quaid Morris,et al.  Transcriptional networks: reverse-engineering gene regulation on a global scale. , 2004, Current opinion in microbiology.

[112]  A. Butte,et al.  Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[113]  M. West,et al.  Sparse graphical models for exploring gene expression data , 2004 .

[114]  Satoru Miyano,et al.  Weighted lasso in graphical Gaussian modeling for large gene network estimation based on microarray data. , 2007, Genome informatics. International Conference on Genome Informatics.