A family of explicit algorithms for general pseudodynamic testing

A new family of explicit pseudodynamic algorithms is proposed for general pseudodynamic testing. One particular subfamily seems very promising for use in general pseudodynamic testing since the stability problem for a structure does not need to be considered. This is because this subfamily is unconditionally stable for any instantaneous stiffness softening system, linear elastic system and instantaneous stiffness hardening system that might occur in the pseudodynamic testing of a real structure. In addition, it also offers good accuracy when compared to a general second-order accurate method for both linear elastic and nonlinear systems.

[1]  Shuenn-Yih Chang,et al.  Improved Explicit Method for Structural Dynamics , 2007 .

[2]  Keh-Chyuan Tsai,et al.  Improved time integration for pseudodynamic tests , 1998 .

[3]  Shuenn-Yih Chang,et al.  Explicit Pseudodynamic Algorithm with Unconditional Stability , 2002 .

[4]  Shuenn-Yih Chang Error Propagation in Implicit Pseudodynamic Testing of Nonlinear Systems , 2005 .

[5]  T. Manivannan,et al.  On the accuracy of an implicit algorithm for pseudodynamic tests , 1990 .

[6]  Pui-Shum B. Shing,et al.  Implicit time integration for pseudodynamic tests , 1991 .

[7]  O. C. Zienkiewicz,et al.  An alpha modification of Newmark's method , 1980 .

[8]  Shuenn-Yih Chang Improved numerical dissipation for explicit methods in pseudodynamic tests , 1997 .

[9]  S. Y. Chang,et al.  Application of the momentum equations of motion to pseudo–dynamic testing , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[10]  Shuenn‐Yih Chang Nonlinear Error Propagation Analysis for Explicit Pseudodynamic Algorithm , 2003 .

[11]  Stephen A. Mahin,et al.  Two new implicit algorithms of pseudodynamic test methods , 1993 .

[12]  Shuenn-Yih Chang A series of energy conserving algorithms for structural dynamics , 1996 .

[13]  K. Park An Improved Stiffly Stable Method for Direct Integration of Nonlinear Structural Dynamic Equations , 1975 .

[14]  J. Z. Zhu,et al.  The finite element method , 1977 .

[15]  Stephen A. Mahin,et al.  Cumulative experimental errors in pseudodynamic tests , 1987 .

[16]  Stephen A. Mahin,et al.  Elimination of spurious higher-mode response in pseudodynamic tests , 1987 .

[17]  Ralf Peek,et al.  Error Analysis for Pseudodynamic Test Method. II: Application , 1990 .

[18]  Masayoshi Nakashima,et al.  Integration Techniques for Substructure Pseudo Dynamic Test , 1990 .

[19]  T. Belytschko,et al.  Computational Methods for Transient Analysis , 1985 .

[20]  John C. Houbolt,et al.  A Recurrence Matrix Solution for the Dynamic Response of Elastic Aircraft , 1950 .

[21]  Stephen A. Mahin,et al.  EXPERIMENTAL ERROR EFFECTS IN PSEUDODYNAMIC TESTING , 1990 .

[22]  Nathan M. Newmark,et al.  A Method of Computation for Structural Dynamics , 1959 .

[23]  Thomas J. R. Hughes,et al.  Improved numerical dissipation for time integration algorithms in structural dynamics , 1977 .

[24]  Ralf Peek,et al.  Error Analysis for Pseudodynamic Test Method. I: Analysis , 1990 .

[25]  Stephen A. Mahin,et al.  An unconditionally stable hybrid pseudodynamic algorithm , 1995 .

[26]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[27]  Shuenn-Yih Chang,et al.  THE γ-FUNCTION PSEUDODYNAMIC ALGORITHM , 2000 .