A Rigorous Numerical Method for the Global Analysis of Infinite-Dimensional Discrete Dynamical Systems

We present a numerical method to prove certain statements about the global dynamics of infinite-dimensional maps. The method combines set-oriented numerical tools for the computation of invariant sets and isolating neighborhoods, the Conley index theory, and analytic considerations. It not only allows for the detection of a certain dynamical behavior, but also for a precise computation of the corresponding invariant sets in phase space. As an example computation we show the existence of period points, connecting orbits, and chaotic dynamics in the Kot--Schaffer growth-dispersal model for plants.

[1]  Martin Rumpf,et al.  The computation of an unstable invariant set inside a cylinder containing a knotted flow , 2000 .

[2]  David Richeson,et al.  Shift Equivalence and the Conley Index , 1999, math/9910171.

[3]  Konstantin Mischaikow,et al.  Exploring global dynamics: a numerical algorithm based on the conley index theory , 1995 .

[4]  Oliver Junge,et al.  Rigorous discretization of subdivision techniques , 2000 .

[5]  Andrzej Szymczak The Conley index for decompositions of isolated invariant sets , 1995 .

[6]  Marian Mrozek,et al.  Shape index and other indices of Conley type for local maps on locally compact Hausdorff spaces , 1994 .

[7]  K. Mischaikow,et al.  Chaos in the Lorenz equations: a computer-assisted proof , 1995, math/9501230.

[8]  A. Szymczak The Conley index and symbolic dynamics , 1996 .

[9]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[10]  Regularity , 2001, Peirce's Pragmatism.

[11]  M. Kot,et al.  Discrete-time growth-dispersal models , 1986 .

[12]  Konstantin Mischaikow,et al.  Graph Approach to the Computation of the Homology of Continuous Maps , 2005, Found. Comput. Math..

[13]  Warwick Tucker,et al.  Foundations of Computational Mathematics a Rigorous Ode Solver and Smale's 14th Problem , 2022 .

[14]  K. Mischaikow,et al.  Chaos in the Lorenz Equations: A Computer Assisted Proof Part III: Classical Parameter Values , 1995, math/9501230.

[15]  Konstantin Mischaikow,et al.  Rigorous Numerics for Partial Differential Equations: The Kuramoto—Sivashinsky Equation , 2001, Found. Comput. Math..

[16]  A. Szymczak A combinatorial procedure for finding isolating neighbourhoods and index pairs , 1997, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[17]  M. Mrozek,et al.  Conley index for discrete multi-valued dynamical systems , 1995 .

[18]  Joel Smoller,et al.  The Conley Index , 1983 .

[19]  M. Dellnitz,et al.  A subdivision algorithm for the computation of unstable manifolds and global attractors , 1997 .

[20]  Gianni Arioli,et al.  Symbolic Dynamics for the Hénon–Heiles Hamiltonian on the Critical Level , 2001 .

[21]  Jack K. Hale,et al.  Regularity, determining modes and Galerkin methods , 2003 .

[22]  Anthony W. Baker Bounding entropy and finding symbolic dynamics via the spectrum of the Conley index , 2000 .

[23]  Anthony W. Baker Lower bounds on entropy via the Conley index with application to time series , 2002 .

[24]  Andrzej Syzmczak Index pairs :from dynamics to combinatorics and back , 1999 .