Adaptive cooperative particle swarm optimizer

An Adaptive Cooperative Particle Swarm Optimizer (ACPSO) is introduced in this paper, which facilitates cooperation technique through the usage of the Learning Automata (LA) algorithm. The cooperative strategy of ACPSO optimizes the problem collaboratively and evaluates it in different contexts. In the ACPSO algorithm, a set of learning automata associated with dimensions of the problem are trying to find the correlated variables of the search space and optimize the problem intelligently. This collective behavior of ACPSO will fulfill the task of adaptive selection of swarm members. Simulations were conducted on four types of benchmark suites which contain three state-of-the-art numerical optimization benchmark functions in addition to one new set of active coordinate rotated test functions. The results demonstrate the learning ability of ACPSO in finding correlated variables of the search space and also describe how efficiently it can optimize the coordinate rotated multimodal problems, composition functions and high-dimensional multimodal problems.

[1]  Habibollah Haron,et al.  Cellular-based Population to Enhance Genetic Algorithm for Assignment Problems , 2012 .

[2]  Jing J. Liang,et al.  Comprehensive learning particle swarm optimizer for global optimization of multimodal functions , 2006, IEEE Transactions on Evolutionary Computation.

[3]  Kathleen Steinhöfel,et al.  Stochastic Algorithms: Foundations and Applications , 2001, Lecture Notes in Computer Science.

[4]  Mahmood Fathy,et al.  PSO based Deployment Algorithms in Hybrid Sensor Networks , 2010 .

[5]  B. Jafarpour,et al.  A hybrid method for optimization (discrete PSO + CLA) , 2007, 2007 International Conference on Intelligent and Advanced Systems.

[6]  Marco Caserta,et al.  Metaheuristics: Intelligent Decision Making , 2011 .

[7]  Sanyou Zeng,et al.  Advances in Computation and Intelligence, Second International Symposium, ISICA 2007, Wuhan, China, September 21-23, 2007, Proceedings , 2007, ISICA.

[8]  Xin-She Yang,et al.  Firefly Algorithms for Multimodal Optimization , 2009, SAGA.

[9]  Mohammad Reza Meybodi,et al.  Improving Learning Automata based Particle Swarm: An optimization algorithm , 2011, 2011 IEEE 12th International Symposium on Computational Intelligence and Informatics (CINTI).

[10]  Kumpati S. Narendra,et al.  Learning Automata - A Survey , 1974, IEEE Trans. Syst. Man Cybern..

[11]  Maziar Palhang,et al.  LADPSO: using fuzzy logic to conduct PSO algorithm , 2012, Applied Intelligence.

[12]  Xin Yao,et al.  Large scale evolutionary optimization using cooperative coevolution , 2008, Inf. Sci..

[13]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[14]  Dan Boneh,et al.  On genetic algorithms , 1995, COLT '95.

[15]  Mohammad Reza Meybodi,et al.  CellularDE: A Cellular Based Differential Evolution for Dynamic Optimization Problems , 2011, ICANNGA.

[16]  Chin-Teng Lin,et al.  Dynamic group-based differential evolution using a self-adaptive strategy for global optimization problems , 2012, Applied Intelligence.

[17]  Qingfu Zhang,et al.  Differential Evolution With Composite Trial Vector Generation Strategies and Control Parameters , 2011, IEEE Transactions on Evolutionary Computation.

[18]  Peter J. Bentley,et al.  Detecting interest cache poisoning in sensor networks using an artificial immune algorithm , 2010, Applied Intelligence.

[19]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[20]  John S. Bay,et al.  Intelligent navigation of autonomous vehicles in an automated highway system: learning methods and interacting vehicles approach , 1997 .

[21]  Mohammad Reza Meybodi,et al.  Some Hybrid models to Improve Firefly Algorithm Performance , 2012 .

[22]  Mohammad Reza Meybodi,et al.  New Learning Automata based Particle Swarm Optimization Algorithms , 2008 .

[23]  P. S. Sastry,et al.  Varieties of learning automata: an overview , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[24]  Riccardo Poli,et al.  Particle Swarm Optimisation , 2011 .

[25]  Andries Petrus Engelbrecht,et al.  A fuzzy particle swarm optimization algorithm for computer communication network topology design , 2010, Applied Intelligence.

[26]  Ye Li,et al.  Adaptive particle swarm optimization with mutation , 2011, Proceedings of the 30th Chinese Control Conference.

[27]  Mohammad Reza Meybodi,et al.  A cellular learning automata-based algorithm for solving the vertex coloring problem , 2011, Expert Syst. Appl..

[28]  Zhen Ji,et al.  DNA Sequence Compression Using Adaptive Particle Swarm Optimization-Based Memetic Algorithm , 2011, IEEE Transactions on Evolutionary Computation.

[29]  D. Sofge,et al.  A blended population approach to cooperative coevolution for decomposition of complex problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[30]  Erik Valdemar Cuevas Jiménez,et al.  A multi-threshold segmentation approach based on Artificial Bee Colony optimization , 2012, Applied Intelligence.

[31]  Mohammad Reza Meybodi,et al.  A note on learning automata-based schemes for adaptation of BP parameters , 2002, Neurocomputing.

[32]  Andy J. Keane,et al.  Surrogate-assisted coevolutionary search , 2002, Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02..

[33]  Mohammad Reza Meybodi,et al.  A new discrete binary particle swarm optimization based on learning automata , 2004, 2004 International Conference on Machine Learning and Applications, 2004. Proceedings..

[34]  Zhen Ji,et al.  A novel intelligent particle optimizer for global optimization of multimodal functions , 2007, 2007 IEEE Congress on Evolutionary Computation.

[35]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[36]  S. Sieniutycz Dynamic programming and Lagrange multipliers for active relaxation of resources in nonlinear non-equilibrium systems , 2009 .

[37]  Xueming Ding,et al.  A Multi-Swarm Self-Adaptive and Cooperative Particle Swarm Optimization , 2011, Eng. Appl. Artif. Intell..

[38]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[39]  Kenneth A. De Jong,et al.  A Cooperative Coevolutionary Approach to Function Optimization , 1994, PPSN.

[40]  Hongfei Teng,et al.  Cooperative Co-evolutionary Differential Evolution for Function Optimization , 2005, ICNC.

[41]  R Bellman,et al.  DYNAMIC PROGRAMMING AND LAGRANGE MULTIPLIERS. , 1956, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Tughrul Arslan,et al.  IEEE Congress on Evolutionary Computation, CEC 2021, Kraków, Poland, June 28 - July 1, 2021 , 2021, IEEE Congress on Evolutionary Computation.

[43]  Mohammed El-Abd A cooperative approach to The Artificial Bee Colony algorithm , 2010, IEEE Congress on Evolutionary Computation.

[44]  James Kennedy,et al.  Defining a Standard for Particle Swarm Optimization , 2007, 2007 IEEE Swarm Intelligence Symposium.

[45]  Qingfu Zhang,et al.  An orthogonal genetic algorithm for multimedia multicast routing , 1999, IEEE Trans. Evol. Comput..

[46]  Mohammad Reza Meybodi,et al.  PSO-LA: A NEW MODEL FOR OPTIMIZATION , 2007 .

[47]  Mohammad Reza Meybodi,et al.  Dynamic Point Coverage Problem in Wireless Sensor Networks: A Cellular Learning Automata Approach , 2010, Ad Hoc Sens. Wirel. Networks.

[48]  Jun Zhang,et al.  Orthogonal Learning Particle Swarm Optimization , 2011, IEEE Trans. Evol. Comput..

[49]  Q. Henry Wu,et al.  MCPSO: A multi-swarm cooperative particle swarm optimizer , 2007, Appl. Math. Comput..

[50]  Mohammad Reza Meybodi,et al.  Cellular PSO: A PSO for Dynamic Environments , 2009, ISICA.

[51]  Yew-Soon Ong,et al.  Advances in Natural Computation, First International Conference, ICNC 2005, Changsha, China, August 27-29, 2005, Proceedings, Part I , 2005, ICNC.

[52]  M. R. Meybodi,et al.  CLA-DE: a hybrid model based on cellular learning automata for numerical optimization , 2012, Applied Intelligence.

[53]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[54]  Q. Henry Wu,et al.  Group Search Optimizer: An Optimization Algorithm Inspired by Animal Searching Behavior , 2009, IEEE Transactions on Evolutionary Computation.

[55]  Andries Petrus Engelbrecht,et al.  Cooperative learning in neural networks using particle swarm optimizers , 2000, South Afr. Comput. J..

[56]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[57]  Mohammad Reza Meybodi,et al.  LACAIS: Learning Automata Based Cooperative Artificial Immune System for Function Optimization , 2010, IC3.

[58]  Mohammad Reza Meybodi,et al.  A cellular learning automata-based deployment strategy for mobile wireless sensor networks , 2011, J. Parallel Distributed Comput..

[59]  Mohammad Reza Meybodi,et al.  A note on the learning automata based algorithms for adaptive parameter selection in PSO , 2011, Appl. Soft Comput..

[60]  Thomas Bäck,et al.  An Overview of Evolutionary Algorithms for Parameter Optimization , 1993, Evolutionary Computation.

[61]  Kumpati S. Narendra,et al.  Learning automata - an introduction , 1989 .

[62]  Jun Zhang,et al.  Orthogonal Learning Particle Swarm Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[63]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .

[64]  Chih-Ping Chu,et al.  PC2PSO: personalized e-course composition based on Particle Swarm Optimization , 2011, Applied Intelligence.

[65]  Greet Van den Berghe,et al.  A Hyper-heuristic with Learning Automata for the Traveling Tournament Problem , 2012 .

[66]  Reinhard Männer,et al.  Parallel Problem Solving from Nature — PPSN III , 1994, Lecture Notes in Computer Science.

[67]  Yujun Zheng,et al.  A new particle swarm optimization algorithm for fuzzy optimization of armored vehicle scheme design , 2012, Applied Intelligence.

[68]  Jan Wessnitzer,et al.  A Model of Non-elemental Associative Learning in the Mushroom Body Neuropil of the Insect Brain , 2007, ICANNGA.

[69]  Albert Y. Zomaya Handbook of Nature-Inspired and Innovative Computing - Integrating Classical Models with Emerging Technologies , 2006 .

[70]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[71]  M. Hasanzadeh,et al.  A robust heuristic algorithm for Cooperative Particle Swarm Optimizer: A Learning Automata approach , 2012, 20th Iranian Conference on Electrical Engineering (ICEE2012).

[72]  Andrew Lim,et al.  Particle Swarm Optimization and Hill Climbing for the bandwidth minimization problem , 2006, Applied Intelligence.

[73]  Andries Petrus Engelbrecht,et al.  A Cooperative approach to particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[74]  M. Meybodi,et al.  Cellular Learning Automata With Multiple Learning Automata in Each Cell and Its Applications , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[75]  Q. Henry Wu,et al.  A Novel Group Search Optimizer Inspired by Animal Behavioural Ecology , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[76]  Yamina Mohamed Ben Ali,et al.  Psychological model of particle swarm optimization based multiple emotions , 2012, Applied Intelligence.

[77]  Jürgen Branke,et al.  Multiswarms, exclusion, and anti-convergence in dynamic environments , 2006, IEEE Transactions on Evolutionary Computation.