MEASUREMENT OF THE RADIUS OF NEUTRON STARS WITH HIGH SIGNAL-TO-NOISE QUIESCENT LOW-MASS X-RAY BINARIES IN GLOBULAR CLUSTERS

This paper presents the measurement of the neutron star (NS) radius using the thermal spectra from quiescent low-mass X-ray binaries (qLMXBs) inside globular clusters (GCs). Recent observations of NSs have presented evidence that cold ultra dense matter—present in the core of NSs—is best described by “normal matter” equations of state (EoSs). Such EoSs predict that the radii of NSs, RNS, are quasi-constant (within measurement errors, of ∼10%) for astrophysically relevant masses (MNS>0.5 M☉). The present work adopts this theoretical prediction as an assumption, and uses it to constrain a single RNS value from five qLMXB targets with available high signal-to-noise X-ray spectroscopic data. Employing a Markov chain Monte-Carlo approach, we produce the marginalized posterior distribution for RNS, constrained to be the same value for all five NSs in the sample. An effort was made to include all quantifiable sources of uncertainty into the uncertainty of the quoted radius measurement. These include the uncertainties in the distances to the GCs, the uncertainties due to the Galactic absorption in the direction of the GCs, and the possibility of a hard power-law spectral component for count excesses at high photon energy, which are observed in some qLMXBs in the Galactic plane. Using conservative assumptions, we found that the radius, common to the five qLMXBs and constant for a wide range of masses, lies in the low range of possible NS radii, (90%-confidence). Such a value is consistent with low-RNS equations of state. We compare this result with previous radius measurements of NSs from various analyses of different types of systems. In addition, we compare the spectral analyses of individual qLMXBs to previous works.

[1]  W. Ho,et al.  MASS/RADIUS CONSTRAINTS ON THE QUIESCENT NEUTRON STAR IN M13 USING HYDROGEN AND HELIUM ATMOSPHERES , 2013, 1301.3768.

[2]  S. Bogdanov THE NEAREST MILLISECOND PULSAR REVISITED WITH XMM-NEWTON: IMPROVED MASS–RADIUS CONSTRAINTS FOR PSR J0437–4715 , 2012, 1211.6113.

[3]  J. Anderson,et al.  DEEP HUBBLE SPACE TELESCOPE IMAGING IN NGC 6397: STELLAR DYNAMICS , 2012, 1210.0826.

[4]  Andrew W. Steiner,et al.  THE NEUTRON STAR MASS–RADIUS RELATION AND THE EQUATION OF STATE OF DENSE MATTER , 2012, 1205.6871.

[5]  Peter Abraham,et al.  Transient dust in warm debris disks - Detection of Fe-rich olivine grains , 2012, 1204.2374.

[6]  W. Ho,et al.  Neutron star atmosphere composition: the quiescent, low‐mass X‐ray binary in the globular cluster M28 , 2012, 1203.5807.

[7]  M. Turner,et al.  THE McGill PLANAR HYDROGEN ATMOSPHERE CODE (McPHAC) , 2012 .

[8]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[9]  J. Anderson,et al.  THE SPECTRAL ENERGY DISTRIBUTIONS OF WHITE DWARFS IN 47 Tucanae: THE DISTANCE TO THE CLUSTER , 2011, 1112.1425.

[10]  H. Rix,et al.  THE SPATIAL STRUCTURE OF MONO-ABUNDANCE SUB-POPULATIONS OF THE MILKY WAY DISK , 2011, 1111.1724.

[11]  A. Cumming,et al.  CONSTRAINTS ON NEUTRON STAR MASS AND RADIUS IN GS 1826−24 FROM SUB-EDDINGTON X-RAY BURSTS , 2011, 1111.0347.

[12]  J. Lattimer Neutron stars and the dense matter equation of state , 2011 .

[13]  R. Breton,et al.  MULTIBAND STUDIES OF THE OPTICAL PERIODIC MODULATION IN THE X-RAY BINARY SAX J1808.4−3658 DURING ITS QUIESCENCE AND 2008 OUTBURST , 2011, 1108.4745.

[14]  E. Brown,et al.  DISCOVERY OF A CANDIDATE QUIESCENT LOW-MASS X-RAY BINARY IN THE GLOBULAR CLUSTER NGC 6553 , 2011, 1104.3864.

[15]  J. Poutanen,et al.  X-ray bursting neutron star atmosphere models: spectra and color corrections , 2011 .

[16]  S. Ransom,et al.  A two-solar-mass neutron star measured using Shapiro delay , 2010, Nature.

[17]  R. Neuhaeuser,et al.  REVISITING THE PARALLAX OF THE ISOLATED NEUTRON STAR RX J185635−3754 USING HST/ACS IMAGING , 2010, 1008.1709.

[18]  E. Cackett,et al.  QUIESCENT X-RAY EMISSION FROM Cen X-4: A VARIABLE THERMAL COMPONENT , 2010, 1007.2823.

[19]  E. Brown,et al.  NEUTRON STAR RADIUS MEASUREMENT WITH THE QUIESCENT LOW-MASS X-RAY BINARY U24 IN NGC 6397 , 2010, 1007.2415.

[20]  E. Brown,et al.  THE EQUATION OF STATE FROM OBSERVED MASSES AND RADII OF NEUTRON STARS , 2010, 1005.0811.

[21]  J. Poutanen,et al.  A NEUTRON STAR STIFF EQUATION OF STATE DERIVED FROM COOLING PHASES OF THE X-RAY BURSTER 4U 1724−307 , 2010, 1004.4871.

[22]  S. Lucatello,et al.  The second and third parameters of the horizontal branch in globular clusters , 2010, 1004.3862.

[23]  M. Bolte,et al.  A RE-EVALUATION OF THE EVOLVED STARS IN THE GLOBULAR CLUSTER M13 , 2010, 1003.5942.

[24]  T. Guver,et al.  THE MASS AND RADIUS OF THE NEUTRON STAR IN 4U 1820−30 , 2010, 1002.3825.

[25]  Jonathan R Goodman,et al.  Ensemble samplers with affine invariance , 2010 .

[26]  Craig O. Heinke,et al.  A neutron star with a carbon atmosphere in the Cassiopeia A supernova remnant , 2009, Nature.

[27]  E. Brown,et al.  CHANDRA OBSERVATION OF QUIESCENT LOW-MASS X-RAY BINARIES IN THE GLOBULAR CLUSTER NGC 6304 , 2009, 0903.4864.

[28]  A. Cabrera-Lavers,et al.  THE DISTANCE, MASS, AND RADIUS OF THE NEUTRON STAR IN 4U 1608−52 , 2008, 0811.3979.

[29]  D. Psaltis,et al.  THE MASS AND RADIUS OF THE NEUTRON STAR IN EXO 1745−248 , 2008, 0810.1521.

[30]  L. Bildsten,et al.  X-ray spectral identification of three candidate quiescent low-mass X-ray binaries in the globular cluster NGC 6304 , 2008, 0808.1305.

[31]  G. Rybicki,et al.  Thermal X-Rays from Millisecond Pulsars: Constraining the Fundamental Properties of Neutron Stars , 2008, 0801.4030.

[32]  M. Servillat,et al.  XMM-Newton observations of the Galactic globular clusters NGC 2808 and NGC 4372 , 2007, 0712.0690.

[33]  G. Bono,et al.  RR Lyrae stars in Galactic globular clusters VI. The period-amplitude relation , 2007, 0709.3177.

[34]  P. Haensel,et al.  Models of crustal heating in accreting neutron stars , 2007, 0708.3996.

[35]  N. Webb,et al.  Constraining the Equation of State of Supranuclear Dense Matter from XMM-Newton Observations of Neutron Stars in Globular Clusters , 2007, 0708.3816.

[36]  T. Belloni,et al.  Is there a link between the neutron-star spin and the frequency of the kilohertz quasi-periodic oscillations? , 2007, 0708.0015.

[37]  F. Ferraro,et al.  Near-Infrared Properties of 24 Globular Clusters in the Galactic Bulge , 2006, astro-ph/0612280.

[38]  K. Kratz,et al.  HEATING IN THE ACCRETED NEUTRON STAR OCEAN: IMPLICATIONS FOR SUPERBURST IGNITION , 2022 .

[39]  F. Özel,et al.  Soft equations of state for neutron-star matter ruled out by EXO 0748 - 676 , 2006, Nature.

[40]  Ian N. Evans,et al.  The Chandra X-ray Observatory calibration database (CalDB): building, planning, and improving , 2006, SPIE Astronomical Telescopes + Instrumentation.

[41]  Sergio Ortolani,et al.  Globular Cluster System and Milky Way Properties Revisited , 2005, astro-ph/0511788.

[42]  E. Verolme,et al.  The dynamical distance and intrinsic structure of the globular cluster ω Centauri , 2005, astro-ph/0509228.

[43]  G. Rybicki,et al.  A Hydrogen Atmosphere Spectral Model Applied to the Neutron Star X7 in the Globular Cluster 47 Tucanae , 2005, astro-ph/0506563.

[44]  Philip C. Gregory,et al.  Bayesian Logical Data Analysis for the Physical Sciences: Acknowledgements , 2005 .

[45]  A. Dotter,et al.  The White Dwarf Cooling Sequence of NGC 6397 , 2005, astro-ph/0701738.

[46]  Jay Anderson,et al.  Hubble Space Telescope Advanced Camera for Surveys Imaging of ω Centauri: Optical Counterpart for the Quiescent Low-Mass X-Ray Binary , 2004 .

[47]  Marco Riello,et al.  A homogeneous set of globular cluster relative distances and reddenings , 2004, astro-ph/0408462.

[48]  G. Rybicki,et al.  On the Lack of Thermal Emission from the Quiescent Black Hole XTE J1118+480: Evidence for the Event Horizon , 2004, astro-ph/0403251.

[49]  M. Castellani,et al.  RR Lyrae Stars in Galactic Globular Clusters. II. A Theoretical Approach to Variables in M3 , 2003, astro-ph/0306356.

[50]  S. Majewski,et al.  2MASS Studies of Differential Reddening across Three Massive Globular Clusters , 2003, astro-ph/0305385.

[51]  Toulouse,et al.  Discovery of a quiescent neutron star binary in the globular cluster M 13 , 2003, astro-ph/0303471.

[52]  J. Grindlay,et al.  X-Ray Studies of Two Neutron Stars in 47 Tucanae: Toward Constraints on the Equation of State , 2003, astro-ph/0301235.

[53]  B. Gendre,et al.  An XMM-Newton observation of the globular cluster Omega Centauri , 2002, astro-ph/0212173.

[54]  R. Elsner,et al.  Chandra X-Ray Observatory Observations of the Globular Cluster M28 and Its Millisecond Pulsar PSR B1821–24 , 2002 .

[55]  S. Djorgovski,et al.  HST color-magnitude diagrams of 74 galactic globular clusters in the HST F439W and F555W bands ⋆ , 2002, astro-ph/0207124.

[56]  John E. Davis,et al.  Event Pileup in Charge-coupled Devices , 2001 .

[57]  R. Neuhaeuser,et al.  Toward a Mass and Radius Determination of the Nearby Isolated Neutron Star RX J185635–3754 , 2001, astro-ph/0107404.

[58]  L. Bildsten,et al.  A Possible Transient Neutron Star in Quiescence in the Globular Cluster NGC 5139 , 2001, astro-ph/0105405.

[59]  L. Bildsten,et al.  Quiescent Thermal Emission from the Neutron Star in Aquila X-1 , 2001, astro-ph/0105319.

[60]  G. Iannicola,et al.  Horizontal-Branch Morphology and Dense Environments: Hubble Space Telescope Observations of Globular Clusters NGC 2298, 5897, 6535, and 6626 , 2001 .

[61]  L. Bildsten,et al.  The Quiescent X-Ray Spectrum of the Neutron Star in Centaurus X-4 Observed with Chandra/ACIS-S , 2000, astro-ph/0012400.

[62]  J. Lattimer,et al.  Neutron Star Structure and the Equation of State , 2000, astro-ph/0002232.

[63]  E. Brown Nuclear Heating and Melted Layers in the Inner Crust of an Accreting Neutron Star , 1999, astro-ph/9910215.

[64]  A. Serenelli,et al.  HELIUM-CORE WHITE DWARFS IN THE GLOBULAR CLUSTER NGC 6397 , 1998, 0904.3496.

[65]  L. Bildsten,et al.  The Thermal X-Ray Spectra of Centaurus X-4, Aquila X-1 , and 4U 1608-522 in Quiescence , 1998, astro-ph/9810288.

[66]  L. Bildsten,et al.  Crustal Heating and Quiescent Emission from Transiently Accreting Neutron Stars , 1998, astro-ph/9807179.

[67]  D. Psaltis,et al.  Constraints on the equation of state of neutron star matter from observations of kilohertz QPOs , 1998, astro-ph/9801140.

[68]  William E. Harris,et al.  A Catalog of Parameters for Globular Clusters in the Milky Way , 1996 .

[69]  P. Côté,et al.  Deep Infrared Array Photometry of Globular Clusters. V. M28 (NGC 6626) , 1996 .

[70]  S. Koranda,et al.  Upper Limits Set by Causality on the Rotation and Mass of Uniformly Rotating Relativistic Stars , 1996, astro-ph/9608179.

[71]  R. Romani,et al.  Model atmospheres for low field neutron stars , 1995, astro-ph/9510094.

[72]  L. Mark Berliner,et al.  Subsampling the Gibbs Sampler , 1994 .

[73]  K. Cudworth,et al.  A new look at the globular cluster M28 , 1991 .

[74]  A. Yahil,et al.  Rapidly rotating pulsars and the equation of state , 1990 .

[75]  J. Weisberg,et al.  Further experimental tests of relativistic gravity using the binary pulsar PSR 1913+16 , 1989 .

[76]  R. Romani Model atmospheres for cooling neutron stars , 1987 .

[77]  M. Perryman,et al.  The Three-Dimensional Universe with Gaia , 2005 .

[78]  P. Gregory Bayesian Logical Data Analysis for the Physical Sciences: Multivariate Gaussian from maximum entropy , 2005 .

[79]  L. Bildsten The Fate of Accreted CNO Elements in Neutron Star Atmospheres , 1992 .

[80]  J. Dickey,et al.  H I in the Galaxy , 1990 .