Toward Secure and Trustworthy Cyberphysical Microfluidic Biochips

Technological shifts in the fields of microfluidics and security are now converging. New techniques in microfluidics increasingly rely on cyberphysical integration and concepts from computer-aided design automation to provide ease-of-use, reliability, and higher throughput. Meanwhile, security concerns are extending beyond traditional information technologies as low-cost computing and sensing proliferates into an ever-increasing number of devices. This keynote paper highlights recent findings and trends in these field to motivate research in the nascent field of cyberphysical microfluidic biochip security and trust.

[1]  Swapnil Bhatia,et al.  A reconfigurable continuous-flow fluidic routing fabric using a modular, scalable primitive. , 2016, Lab on a chip.

[2]  T J Cieslak,et al.  Biological warfare : A historical perspective , 1997 .

[3]  A. deMello,et al.  The past, present and potential for microfluidic reactor technology in chemical synthesis. , 2013, Nature chemistry.

[4]  Christopher Korch,et al.  Deoxyribonucleic acid profiling analysis of 40 human thyroid cancer cell lines reveals cross-contamination resulting in cell line redundancy and misidentification. , 2008, The Journal of clinical endocrinology and metabolism.

[5]  Krishnendu Chakrabarty,et al.  Error Recovery in Cyberphysical Digital Microfluidic Biochips , 2013, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[6]  Nathan Blow,et al.  Microfluidics: in search of a killer application , 2007, Nature Methods.

[7]  Krishnendu Chakrabarty,et al.  Functional testing of digital microfluidic biochips , 2007, 2007 IEEE International Test Conference.

[8]  Philip Brisk,et al.  A digital microfluidic biochip synthesis framework , 2012, 2012 IEEE/IFIP 20th International Conference on VLSI and System-on-Chip (VLSI-SoC).

[9]  Mitsutoshi Nakajima,et al.  Microfluidics for food, agriculture and biosystems industries. , 2011, Lab on a chip.

[10]  Charles S Henry,et al.  Advances in microfluidics for environmental analysis. , 2012, The Analyst.

[11]  Mohamed Ibrahim,et al.  Securing digital microfluidic biochips by randomizing checkpoints , 2016, 2016 IEEE International Test Conference (ITC).

[12]  Ansuman Banerjee,et al.  Sample preparation with multiple dilutions on digital microfluidic biochips , 2014, IET Comput. Digit. Tech..

[13]  Ramesh Ramakrishnan,et al.  Mathematical Analysis of Copy Number Variation in a DNA Sample Using Digital PCR on a Nanofluidic Device , 2008, PloS one.

[14]  M. Yarborough,et al.  Taking steps to increase the trustworthiness of scientific research , 2014, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[15]  D. L. Donoho,et al.  Compressed sensing , 2006, IEEE Trans. Inf. Theory.

[16]  David Naccache,et al.  The Sorcerer's Apprentice Guide to Fault Attacks , 2006, Proceedings of the IEEE.

[17]  C. Kim,et al.  Two-dimensional digital microfluidic system by multilayer printed circuit board , 2005, 18th IEEE International Conference on Micro Electro Mechanical Systems, 2005. MEMS 2005..

[18]  Jie Zhang,et al.  BoardPUF: Physical Unclonable Functions for printed circuit board authentication , 2015, 2015 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).

[19]  Srinivas Devadas,et al.  Silicon physical random functions , 2002, CCS '02.

[20]  Pushpita Roy,et al.  A new approach for root-causing attacks on digital microfluidic devices , 2016, 2016 IEEE Asian Hardware-Oriented Security and Trust (AsianHOST).

[21]  Donald S Young,et al.  The ideal laboratory information system. , 2013, Archives of pathology & laboratory medicine.

[22]  Mohamed Ibrahim,et al.  Security Implications of Cyberphysical Flow-Based Microfluidic Biochips , 2017, 2017 IEEE 26th Asian Test Symposium (ATS).

[23]  Mitsutaka Kadota,et al.  Bidirectional developmental potential in reprogrammed cells with acquired pluripotency , 2014, Nature.

[24]  Ulrich Rührmair,et al.  Virtual Proofs of Reality and their Physical Implementation , 2015, 2015 IEEE Symposium on Security and Privacy.

[25]  Christopher Korch,et al.  DNA profiling analysis of endometrial and ovarian cell lines reveals misidentification, redundancy and contamination. , 2012, Gynecologic oncology.

[26]  Jessica Melin,et al.  Microfluidic large-scale integration: the evolution of design rules for biological automation. , 2007, Annual review of biophysics and biomolecular structure.

[27]  S. Quake,et al.  Microfluidics: Fluid physics at the nanoliter scale , 2005 .

[28]  Ali K Yetisen,et al.  Commercialization of microfluidic devices. , 2014, Trends in biotechnology.

[29]  Charles A. Vacanti,et al.  Stimulus-triggered fate conversion of somatic cells into pluripotency , 2014, Nature.

[30]  Jeyavijayan Rajendran,et al.  Shielding and securing integrated circuits with sensors , 2014, 2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).

[31]  Sebastian J Maerkl,et al.  A software-programmable microfluidic device for automated biology. , 2011, Lab on a chip.

[32]  Mohamed Ibrahim,et al.  Microfluidic encryption of on-chip biochemical assays , 2016, 2016 IEEE Biomedical Circuits and Systems Conference (BioCAS).

[33]  Mohamed Ibrahim,et al.  Experimental demonstration of error recovery in an integrated cyberphysical digital-microfluidic platform , 2015, 2015 IEEE Biomedical Circuits and Systems Conference (BioCAS).

[34]  Fei Su,et al.  High-level synthesis of digital microfluidic biochips , 2008, JETC.

[35]  Gang Chen,et al.  Monitoring environmental pollutants by microchip capillary electrophoresis with electrochemical detection. , 2006, Talanta.

[36]  A. Wheeler,et al.  DropBot: An open-source digital microfluidic control system with precise control of electrostatic driving force and instantaneous drop velocity measurement , 2013 .

[37]  Ronald A. Coutu,et al.  Microelectromechanical Systems (MEMS) Resistive Heaters as Circuit Protection Devices , 2013, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[38]  Ramesh Karri,et al.  Sensor physical unclonable functions , 2010, 2010 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST).

[39]  Bruce Schneier,et al.  Cryptography Engineering - Design Principles and Practical Applications , 2010 .

[40]  Samuel K Sia,et al.  Commercialization of microfluidic point-of-care diagnostic devices. , 2012, Lab on a chip.

[41]  R. Fair,et al.  Droplet-based microfluidic lab-on-a-chip for glucose detection , 2004 .

[42]  Mohamed Ibrahim,et al.  Supply-Chain Security of Digital Microfluidic Biochips , 2016, Computer.

[43]  Krishnendu Chakrabarty,et al.  Hardware/Software Co-Design and Optimization for Cyberphysical Integration in Digital Microfluidic Biochips , 2014 .

[44]  Amanda Capes-Davis,et al.  Recommendation of short tandem repeat profiling for authenticating human cell lines, stem cells, and tissues , 2010, In Vitro Cellular & Developmental Biology - Animal.

[45]  Allon M. Klein,et al.  Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells , 2015, Cell.

[46]  Joseph Wang,et al.  Microchip devices for detecting terrorist weapons , 2003 .

[47]  Da-Jeng Yao,et al.  EWOD microfluidic systems for biomedical applications , 2014 .

[48]  Mohamed Ibrahim,et al.  Secure Randomized Checkpointing for Digital Microfluidic Biochips , 2018, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[49]  Srinivas Devadas,et al.  Controlled physical random functions , 2002, 18th Annual Computer Security Applications Conference, 2002. Proceedings..

[50]  K. Oh,et al.  Generalized serial dilution module for monotonic and arbitrary microfluidic gradient generators. , 2009, Lab on a chip.

[51]  Mirela Alistar,et al.  OpenDrop: An Integrated Do-It-Yourself Platform for Personal Use of Biochips , 2017, Bioengineering.

[52]  Michael S. Hsiao,et al.  Hardware Trojan Attacks: Threat Analysis and Countermeasures , 2014, Proceedings of the IEEE.

[53]  Tsung-Yi Ho,et al.  Piracy prevention of digital microfluidic biochips , 2017, 2017 22nd Asia and South Pacific Design Automation Conference (ASP-DAC).

[54]  Krishnendu Chakrabarty,et al.  Cross-contamination avoidance for droplet routing in digital microfluidic biochips , 2009, 2009 Design, Automation & Test in Europe Conference & Exhibition.

[55]  Srinivas Devadas,et al.  Physical Unclonable Functions and Applications: A Tutorial , 2014, Proceedings of the IEEE.

[56]  Jeyavijayan Rajendran,et al.  Securing pressure measurements using SensorPUFs , 2016, 2016 IEEE International Symposium on Circuits and Systems (ISCAS).

[57]  J A Thomson,et al.  Short tandem repeat profiling provides an international reference standard for human cell lines , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[58]  R. Fair,et al.  Electrowetting-based actuation of droplets for integrated microfluidics. , 2002, Lab on a chip.

[59]  William Thies,et al.  Biocoder: A programming language for standardizing and automating biology protocols , 2010, Journal of biological engineering.

[60]  Farinaz Koushanfar,et al.  BioChipWork: Reverse Engineering of Microfluidic Biochips , 2017, 2017 IEEE International Conference on Computer Design (ICCD).

[61]  Kai Hu,et al.  Testing of Flow-Based Microfluidic Biochips: Fault Modeling, Test Generation, and Experimental Demonstration , 2014, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[62]  G. Whitesides The origins and the future of microfluidics , 2006, Nature.

[63]  John M. Butler,et al.  STRBase: a short tandem repeat DNA database for the human identity testing community , 2001, Nucleic Acids Res..

[64]  J. Neimark Line of attack. , 2015, Science.

[65]  Hector Hugo Caicedo,et al.  Microfluidics: The Challenge Is to Bridge the Gap Instead of Looking for a 'Killer App'. , 2016, Trends in biotechnology.

[66]  Meng Zhang,et al.  Trustworthiness of Medical Devices and Body Area Networks , 2014, Proceedings of the IEEE.

[67]  Victor P. Nelson Fault-tolerant computing: fundamental concepts , 1990, Computer.

[68]  Jonathan Knight,et al.  Microfluidics: Honey, I shrunk the lab , 2002, Nature.

[69]  Mohamed Ibrahim,et al.  CoSyn: Efficient single-cell analysis using a hybrid microfluidic platform , 2017, Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017.

[70]  Philip Brisk,et al.  Random design of microfluidics. , 2016, Lab on a chip.

[71]  Ramesh Karri,et al.  A Primer on Hardware Security: Models, Methods, and Metrics , 2014, Proceedings of the IEEE.

[72]  P. Trinder Determination of Glucose in Blood Using Glucose Oxidase with an Alternative Oxygen Acceptor , 1969 .

[73]  Mark Mohammad Tehranipoor,et al.  Trustworthy Hardware: Identifying and Classifying Hardware Trojans , 2010, Computer.

[74]  Miodrag Potkonjak,et al.  Synthesis of trustable ICs using untrusted CAD tools , 2010, Design Automation Conference.

[75]  Mohamed Ibrahim,et al.  Locking of biochemical assays for digital microfluidic biochips , 2018, 2018 IEEE 23rd European Test Symposium (ETS).

[76]  R. Fair,et al.  An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. , 2004, Lab on a chip.

[77]  Philip Brisk,et al.  An open-source compiler and PCB synthesis tool for digital microfluidic biochips , 2015, Integr..

[78]  H. Parkes,et al.  The costs of using unauthenticated, over-passaged cell lines: how much more data do we need? , 2007, BioTechniques.

[79]  D. Beebe,et al.  The present and future role of microfluidics in biomedical research , 2014, Nature.

[80]  Markus G. Kuhn,et al.  Tamper resistance: a cautionary note , 1996 .

[81]  Mohamed Ibrahim,et al.  Security Assessment of Cyberphysical Digital Microfluidic Biochips , 2016, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[82]  Jeyavijayan Rajendran,et al.  Fault Analysis-Based Logic Encryption , 2015, IEEE Transactions on Computers.

[83]  Michail Maniatakos,et al.  Security and Privacy in Cyber-Physical Systems: A Survey of Surveys , 2017, IEEE Design & Test.

[84]  Srinivas Devadas,et al.  Modeling attacks on physical unclonable functions , 2010, CCS '10.