Dissociation and convergence of the dorsal and ventral visual working memory streams in the human prefrontal cortex

Visual information is largely processed through two pathways in the primate brain: an object pathway from the primary visual cortex to the temporal cortex (ventral stream) and a spatial pathway to the parietal cortex (dorsal stream). Whether and to what extent dissociation exists in the human prefrontal cortex (PFC) has long been debated. We examined anatomical connections from functionally defined areas in the temporal and parietal cortices to the PFC, using noninvasive functional and diffusion-weighted magnetic resonance imaging. The right inferior frontal gyrus (IFG) received converging input from both streams, while the right superior frontal gyrus received input only from the dorsal stream. Interstream functional connectivity to the IFG was dynamically recruited only when both object and spatial information were processed. These results suggest that the human PFC receives dissociated and converging visual pathways, and that the right IFG region serves as an integrator of the two types of information.

[1]  D. C. Lyon The Evolution of Visual Cortex and Visual Systems , 2007 .

[2]  J. Talairach,et al.  Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging , 1988 .

[3]  Leslie G. Ungerleider,et al.  The role of prefrontal cortex in working memory: examining the contents of consciousness. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[4]  J. Fuster,et al.  Unit activity in monkey parietal cortex related to haptic perception and temporary memory , 2004, Experimental Brain Research.

[5]  Heidi Johansen-Berg,et al.  Using diffusion imaging to study human connectional anatomy. , 2009, Annual review of neuroscience.

[6]  Guy M. McKhann,et al.  Non-invasive Mapping of Connections Between Human Thalamus and Cortex Using Diffusion Imaging , 2004 .

[7]  G. Schneider Two visual systems. , 1969, Science.

[8]  Geoff J. M. Parker,et al.  Characterizing function–structure relationships in the human visual system with functional MRI and diffusion tensor imaging , 2004, NeuroImage.

[9]  Alan C. Evans,et al.  Evidence for a two-stage model of spatial working memory processing within the lateral frontal cortex: a positron emission tomography study. , 1996, Cerebral cortex.

[10]  J. Kaas,et al.  The Primate visual system , 2003 .

[11]  D. Pandya,et al.  Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. , 2007, Brain : a journal of neurology.

[12]  D. Pandya,et al.  Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey , 1989, The Journal of comparative neurology.

[13]  B. Postle,et al.  An fMRI Investigation of Cortical Contributions to Spatial and Nonspatial Visual Working Memory , 2000, NeuroImage.

[14]  Lawrence C. Sincich,et al.  Divided by Cytochrome Oxidase: A Map of the Projections from V1 to V2 in Macaques , 2002, Science.

[15]  Karl J. Friston,et al.  Mixed-effects and fMRI studies , 2005, NeuroImage.

[16]  H. Barbas Anatomic organization of basoventral and mediodorsal visual recipient prefrontal regions in the rhesus monkey , 1988, The Journal of comparative neurology.

[17]  Christos Davatzikos,et al.  A Framework for Callosal Fiber Distribution Analysis , 2002, NeuroImage.

[18]  S E Petersen,et al.  A positron emission tomography study of the short-term maintenance of verbal information , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  P. Goldman-Rakic,et al.  Segregation of working memory functions within the dorsolateral prefrontal cortex , 2000, Experimental Brain Research.

[20]  P. Goldman-Rakic,et al.  Areal segregation of face-processing neurons in prefrontal cortex. , 1997, Science.

[21]  Cheryl L. Grady,et al.  Hemispheric differences in neural systems for face working memory: A PET‐rCBF study , 1995 .

[22]  A. Alexander,et al.  White matter tractography using diffusion tensor deflection , 2003, Human brain mapping.

[23]  A. S. Batuev,et al.  Comparative characteristics of unit activity in the prefrontal and parietal areas during delayed performance in monkeys , 1985, Behavioural Brain Research.

[24]  D. Pandya,et al.  Fiber Pathways of the Brain , 2006 .

[25]  H. Duffau,et al.  Direct Evidence for a Parietal-Frontal Pathway Subserving Spatial Awareness in Humans , 2005, Science.

[26]  Edward E. Smith,et al.  Temporal dynamics of brain activation during a working memory task , 1997, Nature.

[27]  G. E. Alexander,et al.  Neuron Activity Related to Short-Term Memory , 1971, Science.

[28]  G. Pearlson,et al.  Diffusion Tensor Imaging and Axonal Tracking in the Human Brainstem , 2001, NeuroImage.

[29]  J. Fuster,et al.  Inferotemporal neurons distinguish and retain behaviorally relevant features of visual stimuli. , 1981, Science.

[30]  R. Goebel,et al.  Content- and Task-Specific Dissociations of Frontal Activity during Maintenance and Manipulation in Visual Working Memory , 2006, The Journal of Neuroscience.

[31]  D. Hubel,et al.  Segregation of form, color, movement, and depth: anatomy, physiology, and perception. , 1988, Science.

[32]  John S. Duncan,et al.  Noninvasive in vivo demonstration of the connections of the human parahippocampal gyrus , 2004, NeuroImage.

[33]  Talma Hendler,et al.  Center–periphery organization of human object areas , 2001, Nature Neuroscience.

[34]  R. Andersen,et al.  Saccade-related activity in the lateral intraparietal area. II. Spatial properties. , 1991, Journal of neurophysiology.

[35]  L. Zollei,et al.  A combined fMRI and DTI examination of functional language lateralization and arcuate fasciculus structure: Effects of degree versus direction of hand preference , 2010, Brain and Cognition.

[36]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[37]  Timothy Edward John Behrens,et al.  Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging , 2003, Nature Neuroscience.

[38]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[39]  Sterling C. Johnson,et al.  Application of Brodmann's area templates for ROI selection in white matter tractography studies , 2006, NeuroImage.

[40]  S. Lehéricy,et al.  3-D diffusion tensor axonal tracking shows distinct SMA and pre-SMA projections to the human striatum. , 2004, Cerebral cortex.

[41]  Dae-Shik Kim,et al.  Diffusion tensor studies dissociated two fronto-temporal pathways in the human memory system , 2007, NeuroImage.

[42]  Susumu Mori,et al.  Introduction to Diffusion Tensor Imaging , 2007 .

[43]  B. Wandell,et al.  Functional organization of human occipital-callosal fiber tracts. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Karl J. Friston,et al.  Assessing the significance of focal activations using their spatial extent , 1994, Human brain mapping.

[45]  Sheng He,et al.  Anatomical correlates of the functional organization in the human occipitotemporal cortex. , 2006, Magnetic resonance imaging.

[46]  John S. Duncan,et al.  Combined functional MRI and tractography to demonstrate the connectivity of the human primary motor cortex in vivo , 2003, NeuroImage.

[47]  Deepak N. Pandya,et al.  The prefrontal cortex: Comparative architectonic organization in the human and the macaque monkey brains , 2012, Cortex.

[48]  R. Andersen,et al.  Callosal and prefrontal associational projecting cell populations in area 7A of the macaque monkey: A study using retrogradely transported fluorescent dyes , 1985, The Journal of comparative neurology.

[49]  Takeshi Hatta,et al.  Handedness and the brain: a review of brain-imaging techniques. , 2007, Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine.

[50]  E. Callaway,et al.  Functional Streams and Local Connections of Layer 4C Neurons in Primary Visual Cortex of the Macaque Monkey , 1998, The Journal of Neuroscience.

[51]  P. Goldman-Rakic,et al.  Human Brain Mapping 6:14–32(1998) � Dissociation of Mnemonic and Perceptual Processes During Spatial and Nonspatial Working Memory Using fMRI , 2022 .

[52]  Leslie G. Ungerleider,et al.  Object vision and spatial vision: two cortical pathways , 1983, Trends in Neurosciences.

[53]  Abraham Z. Snyder,et al.  Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion , 2012, NeuroImage.

[54]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[55]  R. Desimone,et al.  Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. , 1981, Journal of neurophysiology.

[56]  P. Goldman-Rakic,et al.  Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. , 1989, Journal of neurophysiology.

[57]  D. Pandya,et al.  Limbic and sensory connections of the inferior parietal lobule (area PG) in the rhesus monkey: A study with a new method for horseradish peroxidase histochemistry , 1977, Brain Research.

[58]  A. Berthoz,et al.  Functional Anatomy of a Prelearned Sequence of Horizontal Saccades in Humans , 1996, The Journal of Neuroscience.

[59]  M. Catani,et al.  A diffusion tensor imaging tractography atlas for virtual in vivo dissections , 2008, Cortex.

[60]  S. Kastner,et al.  Two hierarchically organized neural systems for object information in human visual cortex , 2008, Nature Neuroscience.

[61]  D. Pandya,et al.  Projections to the frontal cortex from the posterior parietal region in the rhesus monkey , 1984, The Journal of comparative neurology.

[62]  Leslie G. Ungerleider,et al.  Transient and sustained activity in a distributed neural system for human working memory , 1997, Nature.

[63]  Patricia S. Goldman TOPOGRAPHY OF COGNITION: Parallel Distributed Networks in Primate Association Cortex , 1988 .

[64]  E. Iwai,et al.  Responsiveness of inferotemporal single units to visual pattern stimuli in monkeys performing discrimination , 1980, Experimental Brain Research.

[65]  R. Andersen,et al.  Saccade-related activity in the lateral intraparietal area. I. Temporal properties; comparison with area 7a. , 1991, Journal of neurophysiology.

[66]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[67]  Leslie G. Ungerleider,et al.  Object and spatial visual working memory activate separate neural systems in human cortex. , 1996, Cerebral cortex.

[68]  Kenichi Ohki,et al.  Dissociated pathways for successful memory retrieval from the human parietal cortex: anatomical and functional connectivity analyses. , 2008, Cerebral cortex.

[69]  Jennifer L. Cuzzocreo,et al.  Effect of handedness on fMRI activation in the medial temporal lobe during an auditory verbal memory task , 2009, Human brain mapping.

[70]  Y. Miyashita,et al.  Neuronal correlate of pictorial short-term memory in the primate temporal cortexYasushi Miyashita , 1988, Nature.

[71]  Jonathan D. Cohen,et al.  Working Memory for Letters, Shapes, and Locations: fMRI Evidence against Stimulus-Based Regional Organization in Human Prefrontal Cortex , 2000, NeuroImage.

[72]  M. D’Esposito,et al.  Functional MRI studies of spatial and nonspatial working memory. , 1998, Brain research. Cognitive brain research.

[73]  P. Burgess,et al.  Executive function , 2008, Current Biology.

[74]  S C Williams,et al.  Non‐invasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI , 1999, Magnetic resonance in medicine.

[75]  P. Goldman-Rakic,et al.  Activation of human prefrontal cortex during spatial and nonspatial working memory tasks measured by functional MRI. , 1996, Cerebral cortex.

[76]  R. Desimone,et al.  Stimulus-selective properties of inferior temporal neurons in the macaque , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[77]  K. Kawamura,et al.  Corticocortical projections to the prefrontal cortex in the rhesus monkey investigated with horseradish peroxidase techniques , 1984, Neuroscience Research.

[78]  D. B. Bender,et al.  Visual properties of neurons in inferotemporal cortex of the Macaque. , 1972, Journal of neurophysiology.

[79]  P. Basser,et al.  In vivo fiber tractography using DT‐MRI data , 2000, Magnetic resonance in medicine.

[80]  M. Denis,et al.  Functional Anatomy of Spatial Mental Imagery Generated from Verbal Instructions , 1996, The Journal of Neuroscience.

[81]  S C Rao,et al.  Integration of what and where in the primate prefrontal cortex. , 1997, Science.

[82]  Edward Awh,et al.  Spatial versus Object Working Memory: PET Investigations , 1995, Journal of Cognitive Neuroscience.

[83]  P Bartolomeo,et al.  Brain networks of spatial awareness: evidence from diffusion tensor imaging tractography , 2007, Journal of Neurology, Neurosurgery, and Psychiatry.

[84]  A. Owen The Functional Organization of Working Memory Processes Within Human Lateral Frontal Cortex: The Contribution of Functional Neuroimaging , 1997, The European journal of neuroscience.

[85]  R. Desimone,et al.  A neural mechanism for working and recognition memory in inferior temporal cortex. , 1991, Science.

[86]  P. Goldman-Rakic,et al.  Dissociation of object and spatial processing domains in primate prefrontal cortex. , 1993, Science.

[87]  E. Callaway,et al.  Parallel processing strategies of the primate visual system , 2009, Nature Reviews Neuroscience.

[88]  Joseph B. Sala,et al.  Binding of What and Where During Working Memory Maintenance , 2007, Cortex.

[89]  P. Goldman-Rakic,et al.  Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe , 1989, The Journal of comparative neurology.

[90]  Talma Hendler,et al.  Eccentricity Bias as an Organizing Principle for Human High-Order Object Areas , 2002, Neuron.

[91]  H. Duffau,et al.  The functional architecture of the left posterior and lateral prefrontal cortex in humans. , 2008, Cerebral Cortex.

[92]  R. Andersen,et al.  Memory related motor planning activity in posterior parietal cortex of macaque , 1988, Experimental Brain Research.

[93]  Leslie G. Ungerleider,et al.  ‘What’ and ‘where’ in the human brain , 1994, Current Opinion in Neurobiology.

[94]  H. Niki,et al.  Prefrontal cortical unit activity and delayed alternation performance in monkeys. , 1971, Journal of neurophysiology.

[95]  Andrew L. Alexander,et al.  Bootstrap white matter tractography (BOOT-TRAC) , 2005, NeuroImage.

[96]  M. Raichle,et al.  Tracking neuronal fiber pathways in the living human brain. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[97]  J. Kaas Early Visual Areas: V1, V2, V3, DM, DL, and MT , 2003 .

[98]  Leslie G. Ungerleider,et al.  An area specialized for spatial working memory in human frontal cortex. , 1998, Science.

[99]  Mark W. Greenlee,et al.  Event-related Functional Mri of Cortical Activity Evoked by Microsaccades, Small Visually-guided Saccades, and Eyeblinks in Human Visual Cortex , 2022 .

[100]  Vivien A. Casagrande,et al.  Parallel pathways inmacaque monkeystriate cortex: Anatomically defined columns inlayer III , 1992 .

[101]  Leslie G. Ungerleider,et al.  Network analysis of cortical visual pathways mapped with PET , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[102]  P. Goldman-Rakic,et al.  Matching patterns of activity in primate prefrontal area 8a and parietal area 7ip neurons during a spatial working memory task. , 1998, Journal of neurophysiology.

[103]  P. V. van Zijl,et al.  Three‐dimensional tracking of axonal projections in the brain by magnetic resonance imaging , 1999, Annals of neurology.

[104]  D. Parker,et al.  Analysis of partial volume effects in diffusion‐tensor MRI , 2001, Magnetic resonance in medicine.

[105]  M. Mesulam,et al.  Cortical afferent input to the principals region of the rhesus monkey , 1985, Neuroscience.