Spoken Language Interaction with Virtual Agents and Robots (SLIVAR): Towards Effective and Ethical Interaction (Dagstuhl Seminar 20021)

This report documents the outcomes of Dagstuhl Seminar 20021 "Spoken Language Interaction with Virtual Agents and Robots (SLIVAR): Towards Effective and Ethical Interaction". Held in January 2020, the seminar brought together world experts on spoken language processing and human-robot interaction. The aims of the seminar were not only to share knowledge and insights across related fields, but also to cultivate a distinct SLIVAR research community. In this report, we present an overview of the seminar program and its outcomes, abstracts from stimulus talks given by prominent researchers, a summary of the `Show and Tell' demonstrations held during the seminar and open problem statements from participants.

[1]  Séverin Lemaignan,et al.  Artificial cognition for social human-robot interaction: An implementation , 2017, Artif. Intell..

[2]  David Mautner Himmelblau,et al.  Applied Nonlinear Programming , 1972 .

[3]  Thomas Peyrin,et al.  SHA-1 is a Shambles - First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust , 2020, IACR Cryptol. ePrint Arch..

[4]  Eric A. Applegate,et al.  An Introduction to Multi-Objective Simulation Optimization , 2018 .

[5]  Eckart Zitzler,et al.  Dimensionality Reduction in Multiobjective Optimization: The Minimum Objective Subset Problem , 2006, OR.

[6]  Brice Minaud,et al.  Linear Biases in AEGIS Keystream , 2014, Selected Areas in Cryptography.

[7]  Wouter M. Koolen The Pareto Regret Frontier , 2013, NIPS.

[8]  Matthias Ehrgott,et al.  A discussion of scalarization techniques for multiple objective integer programming , 2006, Ann. Oper. Res..

[9]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[10]  Jing Zhao,et al.  It is time to apply biclustering: a comprehensive review of biclustering applications in biological and biomedical data , 2019, Briefings Bioinform..

[11]  Martin Heckmann Audio-visual word prominence detection from clean and noisy speech , 2018, Comput. Speech Lang..

[12]  B. Fisher,et al.  Richard H. Thaler and Cass R. Sunstein: Nudge: Improving Decisions About Health, Wealth, and Happiness , 2010 .

[13]  M. Pickering,et al.  Toward a mechanistic psychology of dialogue , 2004, Behavioral and Brain Sciences.

[14]  Serge Thill,et al.  Beyond bodily anticipation: Internal simulations in social interaction , 2016, Cognitive Systems Research.

[15]  Roger K. Moore Talking with Robots: Opportunities and Challenges , 2019, ArXiv.

[16]  Austin Henderson,et al.  Interaction design: beyond human-computer interaction , 2002, UBIQ.

[17]  Mikio Nakano,et al.  Estimating response obligation in multi-party human-robot dialogues , 2015, 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids).

[18]  Brian Scassellati,et al.  The Physical Presence of a Robot Tutor Increases Cognitive Learning Gains , 2012, CogSci.

[19]  Thomas Hanne,et al.  knowCube: a visual and interactive support for multicriteria decision making , 2005, Comput. Oper. Res..

[20]  Andrzej Jaszkiewicz,et al.  Improved quick hypervolume algorithm , 2016, Comput. Oper. Res..

[21]  Hisao Ishibuchi,et al.  An Analysis of Quality Indicators Using Approximated Optimal Distributions in a 3-D Objective Space , 2020, IEEE Transactions on Evolutionary Computation.

[22]  Roger K. Moore,et al.  Robot, Alien and Cartoon Voices: Implications for Speech-Enabled Systems , 2017 .

[23]  Henk A. L. Kiers,et al.  Optimality criteria for principal component analysis and generalizations , 1996 .

[24]  Patrick M. Reed,et al.  Many objective visual analytics: rethinking the design of complex engineered systems , 2013 .

[25]  Anton Leuski,et al.  Getting to Know Each Other: The Role of Social Dialogue in Recovery from Errors in Social Robots , 2018, 2018 13th ACM/IEEE International Conference on Human-Robot Interaction (HRI).

[26]  Arturo Hernández Aguirre,et al.  G-Metric: an M-ary quality indicator for the evaluation of non-dominated sets , 2008, GECCO '08.

[27]  David Schlangen,et al.  Supporting Spoken Assistant Systems with a Graphical User Interface that Signals Incremental Understanding and Prediction State , 2016, SIGDIAL Conference.

[28]  Björn W. Schuller,et al.  Emotion representation, analysis and synthesis in continuous space: A survey , 2011, Face and Gesture 2011.

[29]  Cynthia Matuszek,et al.  Grounded Language Learning: Where Robotics and NLP Meet , 2018, IJCAI.

[30]  Heike Trautmann,et al.  On the properties of the R2 indicator , 2012, GECCO '12.

[31]  Jason R. Schott Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization. , 1995 .

[32]  David Schlangen,et al.  What we can learn from Dialogue Systems that don't work: On Dialogue Systems as Cognitive Models , 2009 .

[33]  T. Scott-Phillips Speaking Our Minds: Why human communication is different, and how language evolved to make it special , 2014 .

[34]  Amina Adadi,et al.  Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI) , 2018, IEEE Access.

[35]  Nicolae Popovici Involving the Helly number in Pareto reducibility , 2008, Oper. Res. Lett..

[36]  Anton Leuski,et al.  Culture, Errors, and Rapport-building Dialogue in Social Agents , 2018, IVA.

[37]  A. Farhang-Mehr,et al.  Entropy-based multi-objective genetic algorithm for design optimization , 2002 .

[38]  Walter Kasper Team monitoring and reporting for robot-assisted USAR missions , 2016, 2016 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR).

[39]  Séverin Lemaignan,et al.  What Can You See? Identifying Cues on Internal States From the Movements of Natural Social Interactions , 2019, Front. Robot. AI.

[40]  Bart Preneel,et al.  AEGIS: A Fast Authenticated Encryption Algorithm , 2013, Selected Areas in Cryptography.

[41]  G. Eichfelder,et al.  Representation of the Pareto front for heterogeneous multi-objective optimization , 2019, Journal of Applied and Numerical Optimization.

[42]  Hisao Ishibuchi,et al.  Modified Distance Calculation in Generational Distance and Inverted Generational Distance , 2015, EMO.

[43]  Tom Minka,et al.  Automatic Choice of Dimensionality for PCA , 2000, NIPS.

[44]  A. Damasio The Feeling of What Happens: Body and Emotion in the Making of Consciousness , 1999 .

[45]  Luís M. S. Russo,et al.  Quick Hypervolume , 2012, IEEE Transactions on Evolutionary Computation.

[46]  G. Sandini,et al.  Motor Contagion during Human-Human and Human-Robot Interaction , 2014, PloS one.

[47]  Christian Lang,et al.  Facial Communicative Signals: valence recognition in task-oriented human-robot Interaction , 2012 .

[48]  Marc Stevens,et al.  The First Collision for Full SHA-1 , 2017, CRYPTO.

[49]  Carlos A. Coello Coello,et al.  Using the Averaged Hausdorff Distance as a Performance Measure in Evolutionary Multiobjective Optimization , 2012, IEEE Transactions on Evolutionary Computation.

[50]  Antonio R. Damasio,et al.  Homeostasis and soft robotics in the design of feeling machines , 2019, Nature Machine Intelligence.

[51]  Panos M. Pardalos,et al.  Biclustering in data mining , 2008, Comput. Oper. Res..

[52]  Tea Tusar,et al.  Visualization of Pareto Front Approximations in Evolutionary Multiobjective Optimization: A Critical Review and the Prosection Method , 2015, IEEE Transactions on Evolutionary Computation.

[53]  Léo Perrin,et al.  Anomalies and Vector Space Search: Tools for S-Box Analysis , 2019, ASIACRYPT.

[54]  Alexander H. Waibel,et al.  Natural human-robot interaction using speech, head pose and gestures , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[55]  David Schlangen,et al.  A simple generative model of incremental reference resolution for situated dialogue , 2017, Comput. Speech Lang..

[56]  Tomoaki Nakamura,et al.  Small Talk Improves User Impressions of Interview Dialogue Systems , 2016, SIGDIAL Conference.

[57]  Nicolae Popovici,et al.  Pareto reducible multicriteria optimization problems , 2005 .

[58]  Yuhui Shi,et al.  On the Performance Metrics of Multiobjective Optimization , 2012, ICSI.

[59]  Tea Tusar,et al.  Visualization in Multiobjective Optimization , 2016, GECCO.

[60]  Stefan Kopp,et al.  Why emotions should be integrated into conversational agents , 2007 .

[61]  Ivana Kruijff-Korbayová,et al.  Team communication processing and process analytics for supporting robot-assisted emergency response , 2019, 2019 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR).

[62]  Xin Yao,et al.  of Birmingham Quality evaluation of solution sets in multiobjective optimisation , 2019 .

[63]  Willi Meier,et al.  New Conditional Cube Attack on Keccak Keyed Modes , 2019, IACR Cryptol. ePrint Arch..

[64]  Ilse C. F. Ipsen,et al.  A Probabilistic Subspace Bound with Application to Active Subspaces , 2018, SIAM J. Matrix Anal. Appl..

[65]  Michel Beaudouin-Lafon,et al.  Designing interaction, not interfaces , 2004, AVI.

[66]  E. Schegloff,et al.  A simplest systematics for the organization of turn-taking for conversation , 1974 .

[67]  Léo Perrin,et al.  Partitions in the S-Box of Streebog and Kuznyechik , 2019, IACR Cryptol. ePrint Arch..

[68]  Takenobu Tokunaga,et al.  A Unified Probabilistic Approach to Referring Expressions , 2012, SIGDIAL Conference.

[69]  Arash Eshghi,et al.  Feedback in Conversation as Incremental Semantic Update , 2015, IWCS.

[70]  Alex Pentland,et al.  Learning words from sights and sounds: a computational model , 2002, Cogn. Sci..

[71]  Roger K. Moore,et al.  Creating a Voice for MiRo, the World's First Commercial Biomimetic Robot , 2017, INTERSPEECH.

[72]  Agnieszka B. Malinowska Nonessential objective functions in linear multiobjective optimization problems , 2006 .

[73]  Masahiro Araki,et al.  Collection of Multimodal Dialog Data and Analysis of the Result of Annotation of Users' Interest Level , 2018, LREC.

[74]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[75]  Thomas Peyrin,et al.  From Collisions to Chosen-Prefix Collisions - Application to Full SHA-1 , 2019, IACR Cryptol. ePrint Arch..

[76]  Saúl Zapotecas Martínez,et al.  On the low-discrepancy sequences and their use in MOEA/D for high-dimensional objective spaces , 2015, 2015 IEEE Congress on Evolutionary Computation (CEC).

[77]  Dorothea Kolossa,et al.  Speaker-adapted neural-network-based fusion for multimodal reference resolution , 2019, SIGdial.

[78]  Kaisa Miettinen,et al.  Survey of methods to visualize alternatives in multiple criteria decision making problems , 2012, OR Spectrum.

[79]  E. Saff,et al.  Discretizing Manifolds via Minimum Energy Points , 2004 .

[80]  M. Pickering,et al.  Why is conversation so easy? , 2004, Trends in Cognitive Sciences.

[81]  Gabriel Skantze,et al.  Turn-taking, feedback and joint attention in situated human-robot interaction , 2014, Speech Commun..

[82]  Antoine Raux,et al.  The Dialog State Tracking Challenge , 2013, SIGDIAL Conference.

[83]  Katherine E. Twomey,et al.  What's on the Inside Counts: A Grounded Account of Concept Acquisition and Development , 2016, Front. Psychol..

[84]  Inderjit S. Dhillon,et al.  Co-clustering documents and words using bipartite spectral graph partitioning , 2001, KDD '01.

[85]  Jong-hyun Ryu,et al.  A Derivative-Free Trust-Region Method for Biobjective Optimization , 2014, SIAM J. Optim..

[86]  Xiaoyun Wang,et al.  Finding Collisions in the Full SHA-1 , 2005, CRYPTO.

[87]  Susan R. Hunter,et al.  Parallel Ranking and Selection , 2017 .

[88]  Agnieszka B. Malinowska Changes of the set of efficient solutions by extending the number of objectives and its evaluation , 2002 .

[89]  Raja Chatila,et al.  Ethics in Robotics Research: CERNA Mission and Context , 2017, IEEE Robotics & Automation Magazine.

[90]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[91]  Gabriel Skantze,et al.  Real-Time Coordination in Human-Robot Interaction Using Face and Voice , 2017, AI Mag..

[92]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[93]  R. Lyndon While,et al.  A faster algorithm for calculating hypervolume , 2006, IEEE Transactions on Evolutionary Computation.

[94]  Serge Thill,et al.  Companion robots for older people: importance of user-centred design demonstrated through observations and focus groups comparing preferences of older people and roboticists in South West England , 2019, BMJ Open.

[95]  M. Hyyppä Descartes' error. Emotion, reason and the human brain , 1996 .

[96]  A. Farhang-Mehr,et al.  Diversity assessment of Pareto optimal solution sets: an entropy approach , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[97]  Marie Tahon,et al.  Inference of Human Beings’ Emotional States from Speech in Human–Robot Interactions , 2015, Int. J. Soc. Robotics.

[98]  Paul Crowley,et al.  Adiantum: length-preserving encryption for entry-level processors , 2018, IACR Trans. Symmetric Cryptol..

[99]  Martin Heckmann,et al.  Feature-space SVM adaptation for speaker adapted word prominence detection , 2019, Comput. Speech Lang..

[100]  Elizabeth F. Wanner,et al.  A new performance metric for multiobjective optimization: the integrated sphere counting , 2007, 2007 IEEE Congress on Evolutionary Computation.

[101]  Benjamín Barán,et al.  Performance metrics in multi-objective optimization , 2015, 2015 Latin American Computing Conference (CLEI).

[102]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[103]  James F. Allen,et al.  An architecture for a generic dialogue shell , 2000, Natural Language Engineering.

[104]  H. H. Rosenbrock,et al.  An Automatic Method for Finding the Greatest or Least Value of a Function , 1960, Comput. J..

[105]  Kalyanmoy Deb,et al.  Multi-objective Optimisation Using Evolutionary Algorithms: An Introduction , 2011, Multi-objective Evolutionary Optimisation for Product Design and Manufacturing.

[106]  P. Ekman Emotions Revealed: Recognizing Faces and Feelings to Improve Communication and Emotional Life , 2003 .

[107]  Peter J. Fleming,et al.  On the Performance Assessment and Comparison of Stochastic Multiobjective Optimizers , 1996, PPSN.

[108]  Matthew Turk,et al.  Multimodal interaction: A review , 2014, Pattern Recognit. Lett..

[109]  Mohan S. Kankanhalli,et al.  Trends and Trajectories for Explainable, Accountable and Intelligible Systems: An HCI Research Agenda , 2018, CHI.

[110]  Roger K. Moore,et al.  Toward a Needs-Based Architecture for ‘Intelligent’ Communicative Agents: Speaking with Intention , 2017, Front. Robot. AI.

[111]  Lothar Thiele,et al.  A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers , 2006 .

[112]  Julia Hirschberg,et al.  Communication and prosody: Functional aspects of prosody , 2002, Speech Commun..

[113]  Philip Heidelberger,et al.  Discrete event simulations and parallel processing: statistical properties , 1988 .

[114]  L. Lasdon,et al.  On a bicriterion formation of the problems of integrated system identification and system optimization , 1971 .

[115]  Roger K. Moore,et al.  Vocal Interactivity in-and-between Humans, Animals, and Robots , 2016, Front. Robot. AI.

[116]  G. T. Timmer,et al.  Stochastic global optimization methods part I: Clustering methods , 1987, Math. Program..

[117]  Carlos A. Coello Coello,et al.  Solving Multiobjective Optimization Problems Using an Artificial Immune System , 2005, Genetic Programming and Evolvable Machines.

[118]  Kalyanmoy Deb,et al.  Generating Uniformly Distributed Points on a Unit Simplex for Evolutionary Many-Objective Optimization , 2019, EMO.

[119]  Yaochu Jin,et al.  A Critical Survey of Performance Indices for Multi-Objective Optimisation , 2003 .

[120]  Marco Laumanns,et al.  A Tutorial on Evolutionary Multiobjective Optimization , 2004, Metaheuristics for Multiobjective Optimisation.

[121]  Jianfeng Gao,et al.  Dialog System Technology Challenge 7 , 2019, ArXiv.

[122]  Nguyen V. Thoai,et al.  Criteria and dimension reduction of linear multiple criteria optimization problems , 2011, Journal of Global Optimization.

[123]  Serpil Sayin,et al.  A new algorithm for generating all nondominated solutions of multiobjective discrete optimization problems , 2014, Eur. J. Oper. Res..

[124]  Roger K. Moore Vocal Interactivity in Crowds, Flocks and Swarms: Implications for Voice User Interfaces , 2019, ArXiv.

[125]  Stefan M. Wild,et al.  A batch, derivative-free algorithm for finding multiple local minima , 2016 .

[126]  Roger K. Moore A 'Canny' Approach to Spoken Language Interfaces , 2019, ArXiv.

[127]  G. T. Timmer,et al.  Stochastic global optimization methods part II: Multi level methods , 1987, Math. Program..

[128]  E. Vesterinen,et al.  Affective Computing , 2009, Encyclopedia of Biometrics.

[129]  Kaisa Miettinen,et al.  On scalarizing functions in multiobjective optimization , 2002, OR Spectr..

[130]  N. BoissardLACO Structure of Efficient Sets for Strictly Quasi Convex Objectives , 1994 .

[131]  Roger K. Moore A Bayesian explanation of the ‘Uncanny Valley’ effect and related psychological phenomena , 2012, Scientific Reports.

[132]  Alexander V. Lotov,et al.  Interactive Decision Maps: Approximation and Visualization of Pareto Frontier , 2004 .

[133]  Gabriel Skantze,et al.  Towards a General, Continuous Model of Turn-taking in Spoken Dialogue using LSTM Recurrent Neural Networks , 2017, SIGDIAL Conference.

[134]  L. Blumenson A Derivation of n-Dimensional Spherical Coordinates , 1960 .

[135]  Juho Rousu,et al.  Critical Assessment of Small Molecule Identification 2016: automated methods , 2017, Journal of Cheminformatics.

[136]  Gabriele Eichfelder,et al.  A Trust-Region Algorithm for Heterogeneous Multiobjective Optimization , 2019, SIAM J. Optim..

[137]  Ivana Kruijff-Korbayová,et al.  Dialogue Act Classification in Team Communication for Robot Assisted Disaster Response , 2019, SIGdial.

[138]  José Rui Figueira,et al.  Some convergence-based M-ary cardinal metrics for comparing performances of multi-objective optimizers , 2012, Comput. Oper. Res..

[139]  Gary G. Yen,et al.  Performance Metric Ensemble for Multiobjective Evolutionary Algorithms , 2014, IEEE Transactions on Evolutionary Computation.

[140]  Yu Sasaki,et al.  Out of Oddity - New Cryptanalytic Techniques against Symmetric Primitives Optimized for Integrity Proof Systems , 2020, IACR Cryptol. ePrint Arch..

[141]  Iryna Yevseyeva,et al.  Maximizing Consensus in Portfolio Selection in Multicriteria Group Decision Making , 2016 .

[142]  Philip Heidelberger,et al.  Bias Properties of Budget Constrained Simulations , 1990, Oper. Res..

[143]  R. Lyndon While,et al.  A review of multiobjective test problems and a scalable test problem toolkit , 2006, IEEE Transactions on Evolutionary Computation.

[144]  Roger K. Moore Is Spoken Language All-or-Nothing? Implications for Future Speech-Based Human-Machine Interaction , 2016, IWSDS.

[145]  Eckart Zitzler,et al.  Are All Objectives Necessary? On Dimensionality Reduction in Evolutionary Multiobjective Optimization , 2006, PPSN.

[146]  Shahryar Rahnamayan,et al.  3D-RadVis: Visualization of Pareto front in many-objective optimization , 2016, 2016 IEEE Congress on Evolutionary Computation (CEC).

[147]  Yurii Nesterov,et al.  Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.

[148]  Moritz Tenorth,et al.  KnowRob: A knowledge processing infrastructure for cognition-enabled robots , 2013, Int. J. Robotics Res..

[149]  Lucas Bradstreet,et al.  A Fast Incremental Hypervolume Algorithm , 2008, IEEE Transactions on Evolutionary Computation.

[150]  J. A. López del Val,et al.  Principal Components Analysis , 2018, Applied Univariate, Bivariate, and Multivariate Statistics Using Python.

[151]  Jyrki Wallenius,et al.  Visualization in the Multiple Objective Decision-Making Framework , 2008, Multiobjective Optimization.

[152]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithms: classifications, analyses, and new innovations , 1999 .

[153]  Agnieszka B. Malinowska,et al.  Computational Approach to Essential and Nonessential Objective Functions in Linear Multicriteria Optimization , 2007, Journal of Optimization Theory and Applications.

[154]  Dirk Heylen,et al.  A Multimodal Analysis of Vocal and Visual Backchannels in Spontaneous Dialogs , 2011, INTERSPEECH.

[155]  Lori Lamel,et al.  Challenges in real-life emotion annotation and machine learning based detection , 2005, Neural Networks.

[156]  Joseph T. Chang,et al.  Spectral biclustering of microarray data: coclustering genes and conditions. , 2003, Genome research.

[157]  Andrew Lewis,et al.  Novel performance metrics for robust multi-objective optimization algorithms , 2015, Swarm Evol. Comput..

[158]  Stefan Kopp,et al.  Gesture and speech in interaction: An overview , 2014, Speech Commun..

[159]  Karl J. Friston,et al.  A Duet for one , 2015, Consciousness and Cognition.

[160]  E. Polak,et al.  On Multicriteria Optimization , 1976 .

[161]  Tom Ziemke,et al.  On the Importance of a Rich Embodiment in the Grounding of Concepts: Perspectives From Embodied Cognitive Science and Computational Linguistics , 2014, Top. Cogn. Sci..

[162]  John Salvatier,et al.  When Will AI Exceed Human Performance? Evidence from AI Experts , 2017, ArXiv.

[163]  Ralph L. Keeney,et al.  Value-Focused Thinking , 1996 .

[164]  C. Don Looking for Spinoza: Joy, Sorrow, and the Feeling Brain , 2004 .

[165]  Xin Yao,et al.  Diversity Assessment in Many-Objective Optimization , 2017, IEEE Transactions on Cybernetics.

[166]  Janet Beavin Bavelas,et al.  Using Face-to-face Dialogue as a Standard for Other Communication Systems , 1997 .

[167]  Andrew Lewis,et al.  Interactive multi-objective particle swarm optimization with heatmap-visualization-based user interface , 2010 .

[168]  Sean A. Spence,et al.  Descartes' Error: Emotion, Reason and the Human Brain , 1995 .

[169]  David Schlangen,et al.  Language Tasks and Language Games: On Methodology in Current Natural Language Processing Research , 2019, ArXiv.

[170]  Kevin Lee,et al.  Tell me Dave: Context-sensitive grounding of natural language to manipulation instructions , 2014, Int. J. Robotics Res..

[171]  Roger K. Moore Appropriate Voices for Artefacts: Some Key Insights , 2017 .

[172]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[173]  Herbert H. Clark,et al.  Grounding in communication , 1991, Perspectives on socially shared cognition.

[174]  Clifford Nass,et al.  The media equation - how people treat computers, television, and new media like real people and places , 1996 .

[175]  Martin Heckmann,et al.  From Explainability to Explanation: Using a Dialogue Setting to Elicit Annotations with Justifications , 2019, SIGdial.

[176]  Jörg Fliege,et al.  On the effects of combining objectives in multi-objective optimization , 2015, Math. Methods Oper. Res..

[177]  Hans-Peter Kriegel,et al.  Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering , 2009, TKDD.

[178]  Kaisa Miettinen,et al.  Visualizing the Pareto Frontier , 2008, Multiobjective Optimization.

[179]  L. Paquete,et al.  Easy to say they are Hard, but Hard to see they are Easy— Towards a Categorization of Tractable Multiobjective Combinatorial Optimization Problems , 2017 .

[180]  Jörg Fliege,et al.  The effects of adding objectives to an optimisation problem on the solution set , 2007, Oper. Res. Lett..

[181]  Itai Dinur,et al.  Tight Time-Space Lower Bounds for Finding Multiple Collision Pairs and Their Applications , 2020, IACR Cryptol. ePrint Arch..

[182]  Kalyanmoy Deb,et al.  Non-linear Dimensionality Reduction Procedures for Certain Large-Dimensional Multi-objective Optimization Problems: Employing Correntropy and a Novel Maximum Variance Unfolding , 2007, EMO.

[183]  Roger K. Moore,et al.  From Talking and Listening Robots to Intelligent Communicative Machines , 2014 .

[184]  Philip Heidelberger,et al.  Analysis of parallel replicated simulations under a completion time constraint , 1991, TOMC.

[185]  Dorothea Kolossa,et al.  MyFixit: An Annotated Dataset, Annotation Tool, and Baseline Methods for Information Extraction from Repair Manuals , 2020, LREC.

[186]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[187]  Stefan Kopp,et al.  Second Language Tutoring Using Social Robots: A Large-Scale Study , 2019, 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI).