Proximity-Induced Pattern Operations in Reconfigurable DNA Origami Domino Array.

Molecular patterns with nanoscale precision have been used to mimic complex molecular networks. One key challenge in molecular patterns is to perform active pattern operations in controllable systems to fully imitate their complex dynamic behaviors. Here, we present a reconfigurable DNA origami domino array-based dynamic pattern operation (DODA DPO) system to perform proximity-induced molecular control for complex pattern operations. The activatable platform of reconfigurable DODA endows a spontaneous cascade of stacking conformational transformation from the "before" to the "after" conformation by a set of "trigger" DNA strands. The conformational transformation further brings the operational pattern units into close proximity to undergo DNA strand displacement cascades to accomplish three different pattern operations of "writing", "erasing", and "shifting". Our results also demonstrate the reconfigurable DODA DPO system provides a useful basis to study various molecular control analysis in a fully programmable and controllable fashion.

[1]  N. Seeman Nucleic acid junctions and lattices. , 1982, Journal of theoretical biology.

[2]  J. Chao,et al.  Folding super-sized DNA origami with scaffold strands from long-range PCR. , 2012, Chemical communications.

[3]  Yonggang Ke,et al.  Dynamic DNA Structures. , 2019, Small.

[4]  N. Seeman,et al.  DNA junctions, antijunctions, and mesojunctions. , 1992, Biochemistry.

[5]  Jie Song,et al.  Reconfiguration of DNA molecular arrays driven by information relay , 2017, Science.

[6]  H. Sugiyama,et al.  Programmed Two-dimensional Self- Assembly of Multiple Dna Origami Jigsaw Pieces Keywords: Dna Origami · Programmed 2d Self-assembly · Jigsaw Pieces · Nanotechnology · Fast-scanning Atomic Force Microscopy , 2022 .

[7]  H. Dietz,et al.  Dynamic DNA devices and assemblies formed by shape-complementary, non–base pairing 3D components , 2015, Science.

[8]  N. Seeman,et al.  A Proximity-Based Programmable DNA Nanoscale Assembly Line , 2010, Nature.

[9]  Tao Zhang,et al.  Hierarchical assembly of metal nanoparticles, quantum dots and organic dyes using DNA origami scaffolds. , 2013, Nature nanotechnology.

[10]  Travis A. Meyer,et al.  Programmable Assembly of Iron Oxide Nanoparticles using DNA Origami. , 2020, Nano letters.

[11]  F. Simmel,et al.  DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response , 2011, Nature.

[12]  Erik Winfree,et al.  Molecular robots guided by prescriptive landscapes , 2010, Nature.

[13]  Hao Yan,et al.  Exploring the speed limit of toehold exchange with a cartwheeling DNA acrobat , 2018, Nature Nanotechnology.

[14]  Andreas Walther,et al.  3D DNA Origami Cuboids as Monodisperse Patchy Nanoparticles for Switchable Hierarchical Self-Assembly. , 2016, Nano letters.

[15]  Erik Winfree,et al.  Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. , 2010, Nature nanotechnology.

[16]  Juwen Shen,et al.  Programming bulk enzyme heterojunctions for biosensor development with tetrahedral DNA framework , 2020, Nature Communications.

[17]  Lei Wang,et al.  Molecular behavior of DNA origami in higher-order self-assembly. , 2010, Journal of the American Chemical Society.

[18]  J. Kjems,et al.  Self-assembly of a nanoscale DNA box with a controllable lid , 2009, Nature.

[19]  Adrian Keller,et al.  Dynamics of DNA Origami Lattice Formation at Solid-Liquid Interfaces. , 2018, ACS applied materials & interfaces.

[20]  Travis A. Meyer,et al.  Regulation at a distance of biomolecular interactions using a DNA origami nanoactuator , 2016, Nature Communications.

[21]  Friedrich C. Simmel,et al.  Membrane-Assisted Growth of DNA Origami Nanostructure Arrays , 2015, ACS nano.

[22]  Antti-Pekka Eskelinen,et al.  Assembly of single-walled carbon nanotubes on DNA-origami templates through streptavidin-biotin interaction. , 2011, Small.

[23]  Shawn M. Douglas,et al.  A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads , 2012, Science.

[24]  Hao Yan,et al.  Gold nanoparticle self-similar chain structure organized by DNA origami. , 2010, Journal of the American Chemical Society.

[25]  Björn Högberg,et al.  Spatial control of membrane receptor function using ligand nanocalipers , 2014, Nature Methods.

[26]  T. LaBean,et al.  Toward larger DNA origami. , 2014, Nano letters.

[27]  Hao Yan,et al.  DNA origami with double-stranded DNA as a unified scaffold. , 2012, ACS nano.

[28]  Samara L. Reck-Peterson,et al.  Tug-of-War in Motor Protein Ensembles Revealed with a Programmable DNA Origami Scaffold , 2012, Science.

[29]  Baoquan Ding,et al.  Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures. , 2012, Journal of the American Chemical Society.

[30]  Victor Pan,et al.  The Beauty and Utility of DNA Origami , 2017 .

[31]  Fei Zhang,et al.  DNA Origami: Scaffolds for Creating Higher Order Structures. , 2017, Chemical reviews.

[32]  Jie Chao,et al.  Solving mazes with single-molecule DNA navigators , 2018, Nature Materials.

[33]  Wolfgang Pfeifer,et al.  From Nano to Macro through Hierarchical Self‐Assembly: The DNA Paradigm , 2016, Chembiochem : a European journal of chemical biology.

[34]  Jin Cheng,et al.  Create Nanoscale Patterns with DNA Origami. , 2019, Small.

[35]  Yangyang Yang,et al.  Photo-controllable DNA origami nanostructures assembling into predesigned multiorientational patterns. , 2012, Journal of the American Chemical Society.

[36]  Luca Cardelli,et al.  Programmable chemical controllers made from DNA. , 2013, Nature nanotechnology.

[37]  Wei Li,et al.  A cargo-sorting DNA robot , 2017, Science.

[38]  Paul W K Rothemund,et al.  Erratum: Self-assembly of two-dimensional DNA origami lattices using cation-controlled surface diffusion , 2014, Nature Communications.

[39]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[40]  Pascal Lill,et al.  Hierarchical Assembly of DNA Filaments with Designer Elastic Properties. , 2017, ACS nano.

[41]  Hao Yan,et al.  Spatially addressable multiprotein nanoarrays templated by aptamer-tagged DNA nanoarchitectures. , 2007, Journal of the American Chemical Society.

[42]  F. Simmel,et al.  DNA origami-based nanoribbons: assembly, length distribution, and twist , 2011, Nanotechnology.

[43]  Qiao Jiang,et al.  Precise Organization of Metal and Metal Oxide Nanoclusters into Arbitrary Patterns on DNA Origami. , 2019, Journal of the American Chemical Society.

[44]  P. Rothemund,et al.  Programmable molecular recognition based on the geometry of DNA nanostructures. , 2011, Nature chemistry.

[45]  Yan Liu,et al.  Information Coding in Reconfigurable DNA Origami Domino Array. , 2020, Angewandte Chemie.

[46]  M. Komiyama,et al.  Nanomechanical DNA origami 'single-molecule beacons' directly imaged by atomic force microscopy , 2011, Nature communications.

[47]  C. Mao,et al.  DNA nanotechnology. , 2004, BioTechniques.

[48]  Victor Pan,et al.  Design and operation of reconfigurable two-dimensional DNA molecular arrays , 2018, Nature Protocols.

[49]  N. Seeman,et al.  Crystalline two-dimensional DNA-origami arrays. , 2011, Angewandte Chemie.

[50]  F. Simmel,et al.  Surface-assisted large-scale ordering of DNA origami tiles. , 2014, Angewandte Chemie.

[51]  A. J. Markvoort,et al.  Proximity-induced caspase-9 activation on a DNA origami-based synthetic apoptosome , 2019, Nature Catalysis.

[52]  H. Sugiyama,et al.  Lipid-bilayer-assisted two-dimensional self-assembly of DNA origami nanostructures , 2015, Nature Communications.

[53]  H. Sugiyama,et al.  Complexing DNA Origami Frameworks through Sequential Self-Assembly Based on Directed Docking. , 2018, Angewandte Chemie.

[54]  Hao Yan,et al.  Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures. , 2012, Journal of the American Chemical Society.

[55]  Marco Lazzarino,et al.  A revertible, autonomous, self-assembled DNA-origami nanoactuator. , 2011, Nano letters.