Genome analyses of uncultured TG2/ZB3 bacteria in ‘Margulisbacteria’ specifically attached to ectosymbiotic spirochetes of protists in the termite gut

[1]  Donovan H. Parks,et al.  The importance of designating type material for uncultured taxa. , 2019, Systematic and applied microbiology.

[2]  Donovan H. Parks,et al.  A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life , 2018, Nature Biotechnology.

[3]  Y. Brun,et al.  Bacterial adhesion at the single-cell level , 2018, Nature Reviews Microbiology.

[4]  Itai Sharon,et al.  Hydrogen-based metabolism as an ancestral trait in lineages sibling to the Cyanobacteria , 2018, bioRxiv.

[5]  T. Evans,et al.  Rampant Host Switching Shaped the Termite Gut Microbiome , 2018, Current Biology.

[6]  M. Ohkuma,et al.  Phylogenetic Diversity and Single-Cell Genome Analysis of “Melainabacteria”, a Non-Photosynthetic Cyanobacterial Group, in the Termite Gut , 2018, Microbes and environments.

[7]  Alexander J. Probst,et al.  Differential depth distribution of microbial function and putative symbionts through sediment-hosted aquifers in the deep terrestrial subsurface , 2018, Nature Microbiology.

[8]  M. Ohkuma,et al.  Host-Symbiont Cospeciation of Termite-Gut Cellulolytic Protists of the Genera Teranympha and Eucomonympha and their Treponema Endosymbionts , 2018, Microbes and environments.

[9]  C. Husseneder,et al.  Metavirome Sequencing of the Termite Gut Reveals the Presence of an Unexplored Bacteriophage Community , 2018, Front. Microbiol..

[10]  M. Ohkuma,et al.  Discovery of ectosymbiotic Endomicrobium lineages associated with protists in the gut of stolotermitid termites , 2017, Environmental microbiology reports.

[11]  T. Itoh,et al.  Discovery and Complete Genome Sequence of a Bacteriophage from an Obligate Intracellular Symbiont of a Cellulolytic Protist in the Termite Gut , 2017, Microbes and environments.

[12]  Paul J. McMurdie,et al.  Exact sequence variants should replace operational taxonomic units in marker-gene data analysis , 2017, The ISME Journal.

[13]  S. Kohshima,et al.  Bacterial Microbiota Associated with the Glacier Ice Worm Is Dominated by Both Worm-Specific and Glacier-Derived Facultative Lineages , 2017, Microbes and environments.

[14]  Marco De Spirito,et al.  Biomimetic antimicrobial cloak by graphene-oxide agar hydrogel , 2016, Scientific Reports.

[15]  Bo Yu,et al.  CDD/SPARCLE: functional classification of proteins via subfamily domain architectures , 2016, Nucleic Acids Res..

[16]  M. Ohkuma,et al.  Genome of ‘Ca. Desulfovibrio trichonymphae', an H2-oxidizing bacterium in a tripartite symbiotic system within a protist cell in the termite gut , 2016, The ISME Journal.

[17]  Brian C. Thomas,et al.  Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system , 2016, Nature Communications.

[18]  T. Itoh,et al.  Comparison of Intracellular “Ca. Endomicrobium Trichonymphae” Genomovars Illuminates the Requirement and Decay of Defense Systems against Foreign DNA , 2016, Genome biology and evolution.

[19]  Paul J. McMurdie,et al.  DADA2: High resolution sample inference from Illumina amplicon data , 2016, Nature Methods.

[20]  Yu-Chieh Liao,et al.  Accurate binning of metagenomic contigs via automated clustering sequences using information of genomic signatures and marker genes , 2016, Scientific Reports.

[21]  Sudhir Kumar,et al.  MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. , 2016, Molecular biology and evolution.

[22]  Philip Hugenholtz,et al.  A Phylogenomic Analysis of the Bacterial Phylum Fibrobacteres , 2016, Front. Microbiol..

[23]  Tomoyuki Sato,et al.  Dominant ectosymbiotic bacteria of cellulolytic protists in the termite gut also have the potential to digest lignocellulose. , 2015, Environmental microbiology.

[24]  A. Brune,et al.  Restriction-Modification Systems as Mobile Genetic Elements in the Evolution of an Intracellular Symbiont , 2015, Molecular biology and evolution.

[25]  A. Brune,et al.  The Gut Microbiota of Termites: Digesting the Diversity in the Light of Ecology and Evolution. , 2015, Annual review of microbiology.

[26]  Katja Meuser,et al.  Classifying the bacterial gut microbiota of termites and cockroaches: A curated phylogenetic reference database (DictDb). , 2015, Systematic and applied microbiology.

[27]  Connor T. Skennerton,et al.  CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes , 2015, Genome research.

[28]  A. Darby,et al.  Acetogenesis from H2 plus CO2 and nitrogen fixation by an endosymbiotic spirochete of a termite-gut cellulolytic protist , 2015, Proceedings of the National Academy of Sciences.

[29]  B. Baker,et al.  Genomic resolution of linkages in carbon, nitrogen, and sulfur cycling among widespread estuary sediment bacteria , 2015, Microbiome.

[30]  Jun Wang,et al.  Complementary symbiont contributions to plant decomposition in a fungus-farming termite , 2014, Proceedings of the National Academy of Sciences.

[31]  A. Brune,et al.  The fibre‐associated cellulolytic bacterial community in the hindgut of wood‐feeding higher termites (Nasutitermes spp.) , 2014 .

[32]  Yuuri Tsuboi,et al.  Metabolomic profiling of 13C-labelled cellulose digestion in a lower termite: insights into gut symbiont function , 2014, Proceedings of the Royal Society B: Biological Sciences.

[33]  Torsten Seemann,et al.  Prokka: rapid prokaryotic genome annotation , 2014, Bioinform..

[34]  A. Brune Symbiotic digestion of lignocellulose in termite guts , 2014, Nature Reviews Microbiology.

[35]  Tomoyuki Sato,et al.  Intranuclear verrucomicrobial symbionts and evidence of lateral gene transfer to the host protist in the termite gut , 2013, The ISME Journal.

[36]  Jared R. Leadbetter,et al.  Genome-Wide Effects of Selenium and Translational Uncoupling on Transcription in the Termite Gut Symbiont Treponema primitia , 2013, mBio.

[37]  H. Yi,et al.  Novel Role for the Streptococcus pneumoniae Toxin Pneumolysin in the Assembly of Biofilms , 2013, mBio.

[38]  Natalia Ivanova,et al.  Comparative Metagenomic and Metatranscriptomic Analysis of Hindgut Paunch Microbiota in Wood- and Dung-Feeding Higher Termites , 2013, PloS one.

[39]  Alexander F. Auch,et al.  Genome sequence-based species delimitation with confidence intervals and improved distance functions , 2013, BMC Bioinformatics.

[40]  Pelin Yilmaz,et al.  The SILVA ribosomal RNA gene database project: improved data processing and web-based tools , 2012, Nucleic Acids Res..

[41]  R. Knight,et al.  Phylogenetic stratigraphy in the Guerrero Negro hypersaline microbial mat , 2012, The ISME Journal.

[42]  Sergey I. Nikolenko,et al.  SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing , 2012, J. Comput. Biol..

[43]  Elmar Pruesse,et al.  SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes , 2012, Bioinform..

[44]  A. Brune,et al.  Bacteroidales ectosymbionts of gut flagellates shape the nitrogen-fixing community in dry-wood termites , 2011, The ISME Journal.

[45]  Hyun‐dong Shin,et al.  Engineering Escherichia coli Cells for Cellobiose Assimilation through a Phosphorolytic Mechanism , 2011, Applied and Environmental Microbiology.

[46]  P. Bork,et al.  A Holistic Approach to Marine Eco-Systems Biology , 2011, PLoS biology.

[47]  J. Ramos,et al.  Taxonomic and functional metagenomic profiling of the microbial 2 community in the anoxic sediment of a sub-saline shallow lake ( Laguna 3 de Carrizo – Central Spain ) 4 , 2011 .

[48]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[49]  J. Leadbetter,et al.  Anaerobic Carbon Monoxide Dehydrogenase Diversity in the Homoacetogenic Hindgut Microbial Communities of Lower Termites and the Wood Roach , 2011, PloS one.

[50]  Y. Hongoh,et al.  Toward the functional analysis of uncultivable, symbiotic microorganisms in the termite gut , 2011, Cellular and Molecular Life Sciences.

[51]  J. Leadbetter,et al.  RNA-seq reveals cooperative metabolic interactions between two termite-gut spirochete species in co-culture , 2011, The ISME Journal.

[52]  Jared R. Leadbetter,et al.  Genes for selenium dependent and independent formate dehydrogenase in the gut microbial communities of three lower, wood-feeding termites and a wood-feeding roach. , 2011, Environmental microbiology.

[53]  Robert A. Edwards,et al.  Quality control and preprocessing of metagenomic datasets , 2011, Bioinform..

[54]  E. Casamayor,et al.  Hydrography shapes bacterial biogeography of the deep Arctic Ocean , 2010, The ISME Journal.

[55]  Paramvir S. Dehal,et al.  FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments , 2010, PloS one.

[56]  H. Hertel,et al.  Strict cospeciation of devescovinid flagellates and Bacteroidales ectosymbionts in the gut of dry-wood termites (Kalotermitidae). , 2009, Environmental microbiology.

[57]  M. Ohkuma Symbioses of flagellates and prokaryotes in the gut of lower termites. , 2008, Trends in microbiology.

[58]  Yoshiyuki Sakaki,et al.  Complete genome of the uncultured Termite Group 1 bacteria in a single host protist cell , 2008, Proceedings of the National Academy of Sciences.

[59]  Natalia N. Ivanova,et al.  Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite , 2007, Nature.

[60]  A. Brune,et al.  Hydrogen is the central free intermediate during lignocellulose degradation by termite gut symbionts , 2007, The ISME Journal.

[61]  Tomoyuki Sato,et al.  Candidatus Symbiothrix dinenymphae: bristle-like Bacteroidales ectosymbionts of termite gut protists. , 2007, Environmental microbiology.

[62]  G. Thomas,et al.  Sialic acid utilization by bacterial pathogens. , 2007, Microbiology.

[63]  T. Kudo,et al.  Hydrogen Production by Termite Gut Protists: Characterization of Iron Hydrogenases of Parabasalian Symbionts of the Termite Coptotermes formosanus , 2007, Eukaryotic Cell.

[64]  Tomoyuki Sato,et al.  The Motility Symbiont of the Termite Gut Flagellate Caduceia versatilis Is a Member of the “Synergistes” Group , 2007, Applied and Environmental Microbiology.

[65]  Gerard Talavera,et al.  Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. , 2007, Systematic biology.

[66]  G. Tokuda,et al.  Hidden cellulases in termites: revision of an old hypothesis , 2007, Biology Letters.

[67]  Ibtissem Grissa,et al.  CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats , 2007, Nucleic Acids Res..

[68]  Akiyasu C. Yoshizawa,et al.  KAAS: an automatic genome annotation and pathway reconstruction server , 2007, Environmental health perspectives.

[69]  Stephen R. Quake,et al.  Microfluidic Digital PCR Enables Multigene Analysis of Individual Environmental Bacteria , 2006, Science.

[70]  T. Kudo,et al.  Phylogenetic Diversity, Localization, and Cell Morphologies of Members of the Candidate Phylum TG3 and a Subphylum in the Phylum Fibrobacteres, Recently Discovered Bacterial Groups Dominant in Termite Guts , 2006, Applied and Environmental Microbiology.

[71]  A. Brune,et al.  Expression profiles of fhs (FTHFS) genes support the hypothesis that spirochaetes dominate reductive acetogenesis in the hindgut of lower termites. , 2006, Environmental microbiology.

[72]  T. Kudo,et al.  Identification and in situ Detection of Two Lineages of Bacteroidales Ectosymbionts Associated with a Termite Gut Protist, Oxymonas sp. , 2006 .

[73]  T. Kudo,et al.  Intracolony variation of bacterial gut microbiota among castes and ages in the fungus‐growing termite Macrotermes gilvus , 2005, Molecular ecology.

[74]  T. Kudo,et al.  Intra- and Interspecific Comparisons of Bacterial Diversity and Community Structure Support Coevolution of Gut Microbiota and Termite Host , 2005, Applied and Environmental Microbiology.

[75]  T. Kudo,et al.  Spatial distribution of bacterial phylotypes in the gut of the termite Reticulitermes speratus and the bacterial community colonizing the gut epithelium. , 2005, FEMS microbiology ecology.

[76]  T. Kudo,et al.  Comparison of bacterial communities in the alkaline gut segment among various species of higher termites , 2005, Extremophiles.

[77]  J. Breznak,et al.  Folate Cross-Feeding Supports Symbiotic Homoacetogenic Spirochetes , 2005, Applied and Environmental Microbiology.

[78]  K. Schleifer,et al.  ARB: a software environment for sequence data. , 2004, Nucleic acids research.

[79]  J. Breznak,et al.  Physiology and Nutrition of Treponema primitia, an H2/ CO2-Acetogenic Spirochete from Termite Hindguts , 2004, Applied and Environmental Microbiology.

[80]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[81]  B. Roe,et al.  Bacterial Diversity and Sulfur Cycling in a Mesophilic Sulfide-Rich Spring , 2003, Applied and Environmental Microbiology.

[82]  T. Kudo,et al.  Gut of Higher Termites as a Niche for Alkaliphiles as Shown by Culture-Based and Culture-Independent Studies , 2003 .

[83]  T. Kudo,et al.  Molecular analysis of bacterial microbiota in the gut of the termite Reticulitermes speratus (Isoptera; Rhinotermitidae). , 2003, FEMS microbiology ecology.

[84]  T. Kudo,et al.  Phylogenetic Position and In Situ Identification of Ectosymbiotic Spirochetes on Protists in the Termite Gut , 2003, Applied and Environmental Microbiology.

[85]  Gerrit Voordouw,et al.  Rubrerythrin and Rubredoxin Oxidoreductase inDesulfovibrio vulgaris: a Novel Oxidative Stress Protection System , 2001, Journal of bacteriology.

[86]  I. Kataeva,et al.  Duplication and Recombination : Evidence for Gene Thermocellum Clostridium Cellulosome Component of Cellulase Gene Encoding Celk, a Major Cloning and Sequence Analysis of a New , 1999 .

[87]  J. Leadbetter,et al.  Acetogenesis from H2 plus CO2 by spirochetes from termite guts. , 1999, Science.

[88]  Timothy A. Springer,et al.  Folding of the N-terminal, ligand-binding region of integrin α-subunits into a β-propeller domain , 1997 .

[89]  M. Yamin Cellulose metabolism by the flagellate trichonympha from a termite is independent of endosymbiotic bacteria. , 1981, Science.

[90]  W. Trager THE CULTIVATION OF A CELLULOSE-DIGESTING FLAGELLATE, TRICHOMONAS TERMOPSIDIS, AND OF CERTAIN OTHER TERMITE PROTOZOA , 1934 .

[91]  T. Springer Folding of the N-terminal, ligand-binding region of integrin alpha-subunits into a beta-propeller domain. , 1997, Proceedings of the National Academy of Sciences of the United States of America.