Supersensitivity due to uncertain boundary conditions

SUMMARY We study the viscous Burgers’ equation subject to perturbations on the boundary conditions. Two kinds of perturbations are considered: deterministic and random. For deterministic perturbations, we show that small perturbations can result in O(1) changes in the location of the transition layer. For random perturbations, we solve the stochastic Burgers’ equation using different approaches. First, we employ the Jacobi-polynomial-chaos, which is a subset of the generalized polynomial chaos for stochastic modeling. Converged numerical results are reported (up to seven significant digits), and we observe similar ‘stochastic supersensitivity’ for the mean location of the transition layer. Subsequently, we employ up to fourth-order perturbation expansions. We show that even with small random inputs, the resolution of the perturbation method is relatively poor due to the larger stochastic responses in the output. Two types of distributions are considered: uniform distribution and a ‘truncated’ Gaussian distribution with no tails. Various solution statistics, including the spatial evolution of probability density function at steady state, are studied. Copyright 2004 John Wiley & Sons, Ltd.

[1]  I. Babuska,et al.  Solution of stochastic partial differential equations using Galerkin finite element techniques , 2001 .

[2]  Roger Ghanem,et al.  Stochastic Finite-Element Analysis of Soil Layers with Random Interface , 1996 .

[3]  David H. Sharp,et al.  Prediction and the quantification of uncertainty , 1999 .

[4]  Roger Ghanem,et al.  Ingredients for a general purpose stochastic finite elements implementation , 1999 .

[5]  Daniel M. Tartakovsky,et al.  Mean Flow in composite porous media , 2000 .

[6]  Gunilla Kreiss,et al.  Convergence to steady state of solutions of Burger's equation , 1986 .

[7]  Michael J. Ward,et al.  On exponential ill-conditioning and internal layer behavior , 1995 .

[8]  James Glimm,et al.  Nonlinear and Stochastic Phenomena: The Grand Challenge for Partial Differential Equations , 1991, SIAM Rev..

[9]  Robert E. O'Malley,et al.  Viscous shock motion for advection-diffusion equations , 1995 .

[10]  森山 昌彦,et al.  「確率有限要素法」(Stochastic Finite Element Method) , 1985 .

[11]  John Red-Horse,et al.  Propagation of probabilistic uncertainty in complex physical systems using a stochastic finite element approach , 1999 .

[12]  L. Segel,et al.  Introduction to Singular Perturbations. By R. E. O'MALLEY, JR. Academic Press, 1974. $ 16.50. , 1975, Journal of Fluid Mechanics.

[13]  Steven A. Orszag,et al.  Dynamical Properties of Truncated Wiener‐Hermite Expansions , 1967 .

[14]  Ted Belytschko,et al.  Applications of Probabilistic Finite Element Methods in Elastic/Plastic Dynamics , 1987 .

[15]  G. H. Canavan,et al.  Relationship between a Wiener–Hermite expansion and an energy cascade , 1970, Journal of Fluid Mechanics.

[16]  A. Chorin Hermite expansions in Monte-Carlo computation , 1971 .

[17]  Daniel M. Tartakovsky,et al.  Groundwater flow in heterogeneous composite aquifers , 2002 .

[18]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[19]  D. Xiu,et al.  Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos , 2002 .

[20]  Marcin Kamiński,et al.  Stochastic finite element modeling of transient heat transfer in layered composites , 1999 .

[21]  Wing Kam Liu,et al.  Probabilistic finite elements for nonlinear structural dynamics , 1986 .

[22]  R. Askey,et al.  Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials , 1985 .

[23]  W. C. Meecham,et al.  The Wiener-Hermite expansion applied to decaying isotropic turbulence using a renormalized time-dependent base , 1978, Journal of Fluid Mechanics.

[24]  W. Schoutens Stochastic processes and orthogonal polynomials , 2000 .

[25]  H. Najm,et al.  A stochastic projection method for fluid flow II.: random process , 2002 .

[26]  Robert E. O'Malley,et al.  Shock Layer Movement for Burgers' equation , 1995, SIAM J. Appl. Math..

[27]  Wing Kam Liu,et al.  Random field finite elements , 1986 .

[28]  D. Xiu,et al.  Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .

[29]  R. Ghanem,et al.  A stochastic projection method for fluid flow. I: basic formulation , 2001 .

[30]  N. Cutland,et al.  On homogeneous chaos , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.

[31]  René Carmona,et al.  Stochastic Partial Differential Equations: Six Perspectives , 1998 .

[32]  Weiqiu Zhu,et al.  A stochastic finite element method for real eigenvalue problems , 1991 .

[33]  Humberto Contreras,et al.  The stochastic finite-element method , 1980 .

[34]  You‐Kuan Zhang Stochastic Methods for Flow in Porous Media: Coping with Uncertainties , 2001 .

[35]  Robert E. O'Malley,et al.  Exponential Asymptotics, the Viscid Burgers ' Equation, and Standing Wave Solutions for a Reaction‐Advection‐Diffusion Model , 1999 .

[36]  Jens Lorenz,et al.  Nonlinear singular perturbation problems and the Engquist-Osher difference scheme , 1981 .

[37]  D. Xiu,et al.  A new stochastic approach to transient heat conduction modeling with uncertainty , 2003 .

[38]  G. Karniadakis,et al.  Spectral/hp Element Methods for CFD , 1999 .

[39]  Bernt Øksendal,et al.  Stochastic Partial Differential Equations: A Modeling, White Noise Functional Approach , 1996 .

[40]  Robert W. Walters,et al.  Random field solutions including boundary condition uncertainty for the steady-state generalized Burgers equation , 2001 .

[41]  Armen Der Kiureghian,et al.  Finite Element Reliability of Geometrically Nonlinear Uncertain Structures , 1991 .

[42]  Michael J. Ward,et al.  On the exponentially slow motion of a viscous shock , 1995 .

[43]  A. Chorin Gaussian fields and random flow , 1974, Journal of Fluid Mechanics.

[44]  Vimal Singh,et al.  Perturbation methods , 1991 .

[45]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[46]  Mircea Grigoriu,et al.  STOCHASTIC FINITE ELEMENT ANALYSIS OF SIMPLE BEAMS , 1983 .

[47]  James Glimm,et al.  Stochastic partial differential equations: Selected applications in continuum physics , 1999 .

[48]  Robert W. Walters,et al.  Uncertainty analysis for fluid mechanics with applications , 2002 .

[49]  Marc Garbey,et al.  Asymptotic-Numerical Study of Supersensitivity for Generalized Burgers' Equations , 2000, SIAM J. Sci. Comput..

[50]  Roger Ghanem,et al.  Scales of fluctuation and the propagation of uncertainty in random porous media , 1998 .

[51]  D. Xiu,et al.  Stochastic Modeling of Flow-Structure Interactions Using Generalized Polynomial Chaos , 2002 .

[52]  Rajesh Sharma,et al.  Asymptotic analysis , 1986 .

[53]  Ivo Babuška,et al.  On solving elliptic stochastic partial differential equations , 2002 .

[54]  H. Matthies,et al.  Finite elements for stochastic media problems , 1999 .

[55]  Robert E. O'Malley,et al.  On the motion of viscous shocks and the supersensitivity of their steady-state limits , 1994 .

[56]  E. Paleologos,et al.  Stochastic Methods for Flow in Porous Media, Coping With Uncertainties , 2003 .