Supersensitivity due to uncertain boundary conditions
暂无分享,去创建一个
[1] I. Babuska,et al. Solution of stochastic partial differential equations using Galerkin finite element techniques , 2001 .
[2] Roger Ghanem,et al. Stochastic Finite-Element Analysis of Soil Layers with Random Interface , 1996 .
[3] David H. Sharp,et al. Prediction and the quantification of uncertainty , 1999 .
[4] Roger Ghanem,et al. Ingredients for a general purpose stochastic finite elements implementation , 1999 .
[5] Daniel M. Tartakovsky,et al. Mean Flow in composite porous media , 2000 .
[6] Gunilla Kreiss,et al. Convergence to steady state of solutions of Burger's equation , 1986 .
[7] Michael J. Ward,et al. On exponential ill-conditioning and internal layer behavior , 1995 .
[8] James Glimm,et al. Nonlinear and Stochastic Phenomena: The Grand Challenge for Partial Differential Equations , 1991, SIAM Rev..
[9] Robert E. O'Malley,et al. Viscous shock motion for advection-diffusion equations , 1995 .
[10] 森山 昌彦,et al. 「確率有限要素法」(Stochastic Finite Element Method) , 1985 .
[11] John Red-Horse,et al. Propagation of probabilistic uncertainty in complex physical systems using a stochastic finite element approach , 1999 .
[12] L. Segel,et al. Introduction to Singular Perturbations. By R. E. O'MALLEY, JR. Academic Press, 1974. $ 16.50. , 1975, Journal of Fluid Mechanics.
[13] Steven A. Orszag,et al. Dynamical Properties of Truncated Wiener‐Hermite Expansions , 1967 .
[14] Ted Belytschko,et al. Applications of Probabilistic Finite Element Methods in Elastic/Plastic Dynamics , 1987 .
[15] G. H. Canavan,et al. Relationship between a Wiener–Hermite expansion and an energy cascade , 1970, Journal of Fluid Mechanics.
[16] A. Chorin. Hermite expansions in Monte-Carlo computation , 1971 .
[17] Daniel M. Tartakovsky,et al. Groundwater flow in heterogeneous composite aquifers , 2002 .
[18] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[19] D. Xiu,et al. Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos , 2002 .
[20] Marcin Kamiński,et al. Stochastic finite element modeling of transient heat transfer in layered composites , 1999 .
[21] Wing Kam Liu,et al. Probabilistic finite elements for nonlinear structural dynamics , 1986 .
[22] R. Askey,et al. Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials , 1985 .
[23] W. C. Meecham,et al. The Wiener-Hermite expansion applied to decaying isotropic turbulence using a renormalized time-dependent base , 1978, Journal of Fluid Mechanics.
[24] W. Schoutens. Stochastic processes and orthogonal polynomials , 2000 .
[25] H. Najm,et al. A stochastic projection method for fluid flow II.: random process , 2002 .
[26] Robert E. O'Malley,et al. Shock Layer Movement for Burgers' equation , 1995, SIAM J. Appl. Math..
[27] Wing Kam Liu,et al. Random field finite elements , 1986 .
[28] D. Xiu,et al. Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .
[29] R. Ghanem,et al. A stochastic projection method for fluid flow. I: basic formulation , 2001 .
[30] N. Cutland,et al. On homogeneous chaos , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.
[31] René Carmona,et al. Stochastic Partial Differential Equations: Six Perspectives , 1998 .
[32] Weiqiu Zhu,et al. A stochastic finite element method for real eigenvalue problems , 1991 .
[33] Humberto Contreras,et al. The stochastic finite-element method , 1980 .
[34] You‐Kuan Zhang. Stochastic Methods for Flow in Porous Media: Coping with Uncertainties , 2001 .
[35] Robert E. O'Malley,et al. Exponential Asymptotics, the Viscid Burgers ' Equation, and Standing Wave Solutions for a Reaction‐Advection‐Diffusion Model , 1999 .
[36] Jens Lorenz,et al. Nonlinear singular perturbation problems and the Engquist-Osher difference scheme , 1981 .
[37] D. Xiu,et al. A new stochastic approach to transient heat conduction modeling with uncertainty , 2003 .
[38] G. Karniadakis,et al. Spectral/hp Element Methods for CFD , 1999 .
[39] Bernt Øksendal,et al. Stochastic Partial Differential Equations: A Modeling, White Noise Functional Approach , 1996 .
[40] Robert W. Walters,et al. Random field solutions including boundary condition uncertainty for the steady-state generalized Burgers equation , 2001 .
[41] Armen Der Kiureghian,et al. Finite Element Reliability of Geometrically Nonlinear Uncertain Structures , 1991 .
[42] Michael J. Ward,et al. On the exponentially slow motion of a viscous shock , 1995 .
[43] A. Chorin. Gaussian fields and random flow , 1974, Journal of Fluid Mechanics.
[44] Vimal Singh,et al. Perturbation methods , 1991 .
[45] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[46] Mircea Grigoriu,et al. STOCHASTIC FINITE ELEMENT ANALYSIS OF SIMPLE BEAMS , 1983 .
[47] James Glimm,et al. Stochastic partial differential equations: Selected applications in continuum physics , 1999 .
[48] Robert W. Walters,et al. Uncertainty analysis for fluid mechanics with applications , 2002 .
[49] Marc Garbey,et al. Asymptotic-Numerical Study of Supersensitivity for Generalized Burgers' Equations , 2000, SIAM J. Sci. Comput..
[50] Roger Ghanem,et al. Scales of fluctuation and the propagation of uncertainty in random porous media , 1998 .
[51] D. Xiu,et al. Stochastic Modeling of Flow-Structure Interactions Using Generalized Polynomial Chaos , 2002 .
[52] Rajesh Sharma,et al. Asymptotic analysis , 1986 .
[53] Ivo Babuška,et al. On solving elliptic stochastic partial differential equations , 2002 .
[54] H. Matthies,et al. Finite elements for stochastic media problems , 1999 .
[55] Robert E. O'Malley,et al. On the motion of viscous shocks and the supersensitivity of their steady-state limits , 1994 .
[56] E. Paleologos,et al. Stochastic Methods for Flow in Porous Media, Coping With Uncertainties , 2003 .