Low-density tin targets for efficient extreme ultraviolet light emission from laser-produced plasmas
暂无分享,去创建一个
Kunioki Mima | Hiroyuki Furukawa | Noriaki Miyanaga | Hiroaki Nishimura | Shinsuke Fujioka | Keiji Nagai | Takayoshi Norimatsu | Katsunobu Nishihara | Atsushi Sunahara | Akira Sasaki | Tomoharu Okuno | Y. Tao | Yasukazu Izawa | Nobuyoshi Ueda | Tsuyoshi Ando | Qincui Gu | K. Nishihara | Y. Izawa | A. Sunahara | K. Mima | N. Miyanaga | S. Fujioka | H. Nishimura | K. Nagai | Y. Tao | H. Furukawa | T. Norimatsu | A. Sasaki | Tsuyoshi Ando | N. Ueda | T. Okuno | Qincui Gu
[1] Tatsuya Aota,et al. Ultimate efficiency of extreme ultraviolet radiation from a laser-produced plasma. , 2005, Physical review letters.
[2] Katsunobu Nishihara,et al. Conversion efficiency of LPP sources , 2006 .
[3] Hiroaki Nishimura,et al. Preparation of Low-Density Macrocellular Tin Dioxide Foam with Variable Window Size , 2005 .
[4] A. Endo,et al. Laser-Produced Plasma Light Source Development for Extreme Ultraviolet Lithography , 2004 .
[5] T. Collins,et al. Shock propagation in deuterium-tritium-saturated foam , 2005 .
[6] Hiroaki Nishimura,et al. Characterization of extreme ultraviolet emission using the fourth harmonic of a Nd:YAG laser , 2005 .
[7] K. Witte,et al. Reliable Stimulated Brillouin Scattering Compression of Nd:YAG Laser Pulses with Liquid Fluorocarbon for Long-Time Operation at 10 Hz. , 1998, Applied optics.
[8] M. Klapisch,et al. Collisional radiative model for heavy atoms in hot non-local-thermodynamical-equilibrium plasmas , 1997 .
[9] Kunioki Mima,et al. Opacity effect on extreme ultraviolet radiation from laser-produced tin plasmas. , 2005, Physical review letters.
[10] Takashi Kikuchi,et al. Efficient soft x-ray emission source at 13.5 nm by use of a femtosecond-laser-produced Li-based microplasma , 2005 .
[11] Hiroaki Nishimura,et al. Temporally resolved Schwarzschild microscope for the characterization of extreme ultraviolet emission in laser-produced plasmas , 2004 .
[12] Hiroyuki Furukawa,et al. Effect of the satellite lines and opacity on the extreme ultraviolet emission from high-density Xe plasmas , 2004 .
[13] S. R. Goldman,et al. Computational study of laser imprint mitigation in foam-buffered inertial confinement fusion targets , 1998 .
[14] Hiroaki Nishimura,et al. Dynamic imaging of 13.5 nm extreme ultraviolet emission from laser-produced Sn plasmas , 2005 .
[15] Hiroki Tanaka,et al. Comparative study on emission characteristics of extreme ultraviolet radiation from CO2 and Nd:YAG laser-produced tin plasmas , 2005 .
[16] Shinsuke Fujioka,et al. Characterization of extreme ultraviolet emission from laser-produced spherical tin plasma generated with multiple laser beams , 2005 .
[17] Padraig Dunne,et al. 13.5 nm emission from composite targets containing tin , 2005, SPIE Advanced Lithography.
[18] Vivek Bakshi,et al. EUV Sources for Lithography , 2006 .
[19] Hiroki Tanaka,et al. Emission Characteristics of Extreme Ultraviolet Radiation from CO2 Laser-Produced Xenon Plasma , 2004 .
[20] C. Cerjan,et al. Conversion efficiencies from laser-produced plasmas in the extreme ultraviolet regime , 1996 .
[21] Hiroaki Nishimura,et al. Characterization of density profile of laser-produced Sn plasma for 13.5nm extreme ultraviolet source , 2005 .
[22] Sho Amano,et al. Laser wavelength and spot diameter dependence of extreme ultraviolet conversion efficiency in ω, 2ω, and 3ω Nd:YAG laser-produced plasmas , 2005 .
[23] M Richardson,et al. New laser plasma source for extreme-ultraviolet lithography. , 1995, Applied optics.
[24] Keiji Nagai,et al. Detailed space-resolved characterization of a laser-plasma soft-x-ray source at 13.5-nm wavelength with tin and its oxides , 2000 .