VACUUM ULTRAVIOLET CIRCULAR DICHROISM OF DOUBLE STRANDED NUCLEIC ACIDS

The vacuum ultraviolet (VUV) circular dichroism (CD) of double stranded DNA and RNA is greater in amplitude than the CD of these molecules for wavelengths longer than 200 nm. The amplitude of the VUV‐CD depends on the base composition of DNA, with guanine‐cytosine base pairs contributing more intensity than adenine‐thymine base pairs. The shape and amplitude of the VUV‐CO are better indicators of nucleic acid conformation (A, B or Z) than are those of the longer wavelength CD. We illustrate the unique features of VUV‐CD with specific examples. In the presence of Cs+ and ethanol, VUV‐CD reveals that poly(dA‐dC)poly(dG‐dT) forms a right handed double helix despite the inversion of the longer wavelength CD, which usually is used as a benchmark for the left‐handed form. The greater magnitude of the VUV‐CD of DNA and RNA compared to longer wavelengths means that the VUV‐CD is less susceptible to distortion by the induced CD of UV‐absorbing ligands like mitomycin C and N‐2‐acetylaminofluorene.

[1]  W. Johnson EXTENDING CIRCULAR DICHROISM SPECTRA INTO THE VACUUM UV AND ITS APPLICATION TO PROTEINS , 1986, Photochemistry and photobiology.

[2]  J. Alderfer,et al.  Conformational properties of poly[d(G‐T)]·poly[d(C‐A)] and poly[d(A‐T)] in low‐ and high‐salt solutions: Nmr and laser Raman analysis , 1986, Biopolymers.

[3]  M. Behe Vacuum UV CD of the low‐salt Z‐forms of poly(rG‐dC)·poly(rG‐dC), and poly(dG‐m5dC)·poly(dG‐m5dC) , 1986, Biopolymers.

[4]  T. Cross A Solid State Nuclear Magnetic Resonance Approach for Determining the Structure of Gramicidin a without Model Fitting. , 1986, Biophysical journal.

[5]  S. P. Fodor,et al.  Raman spectroscopic elucidation of DNA backbone conformations for poly(dG‐dT) · poly(dA‐dC) and poly(dA‐dT) · poly(dA‐dT) in CsF solution , 1985, Biopolymers.

[6]  P. Cruz,et al.  Evidence for Z-form RNA by vacuum UV circular dichroism , 1985, Nucleic Acids Res..

[7]  W. C. Krueger,et al.  A low-salt form of poly(dG-5M-dC).poly(dG-5M-dC). , 1985, Biopolymers.

[8]  E. Taillandier,et al.  Left-handed helical structure of poly[d(A-C)].poly[d(G-T)] studied by infrared spectroscopy. , 1984, Biochemistry.

[9]  J. Schellman,et al.  Matrix‐method calculation of linear and circular dichroism spectra of nucleic acids and polynucleotides , 1984, Biopolymers.

[10]  D. Gray,et al.  A thin quartz cell suitable for vacuum ultraviolet absorption and circular dichroism measurements. , 1984, Analytical biochemistry.

[11]  J. Sutherland,et al.  Vacuum ultraviolet circular dichroism of poly(dI-dC)·poly(dI-dC): No evidence for a left-handed double helix , 1983 .

[12]  J. Barton,et al.  Lack of Z-DNA conformation in mitomycin-modified polynucleotides having inverted circular dichroism. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[13]  A. Rich,et al.  The sequence (dC-dA)n X (dG-dT)n forms left-handed Z-DNA in negatively supercoiled plasmids. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[14]  N. Assa‐Munt,et al.  Two Dimensional NMR Investigation of the Structural Properties of DNAS , 1983 .

[15]  I. Weinstein,et al.  Carcinogens can induce alternate conformations in nucleic acid structure. , 1983, Cold Spring Harbor symposia on quantitative biology.

[16]  P. Bucher,et al.  Natural DNA sequences can form left-handed helices in low salt solution under conditions of topological constraint. , 1982, Journal of molecular biology.

[17]  J. Šponar,et al.  Conformational transitions of poly(dA-dT)poly(dA-dT) in ethanolic solutions. , 1982, Nucleic acids research.

[18]  S. Stirdivant,et al.  Spectroscopic studies on acetylaminofluorene-modified (dT-dG)n . (dC-dA)n suggest a left-handed conformation. , 1982, The Journal of biological chemistry.

[19]  J. Šponar,et al.  A Z-like form of poly(dA-dC).poly(dC-bT) in sotation? , 1982 .

[20]  C. Marck,et al.  Conformational transitions of poly(dA-dC).poly(dG-dT) induced by high salt or in ethanolic solution. , 1982, Nucleic acids research.

[21]  J. Šponar,et al.  A Z-like form of poly(dA-dC).poly(dG-dT) in solution? , 1982, Nucleic acids research.

[22]  S. Zimmerman The three-dimensional structure of DNA. , 1982, Annual review of biochemistry.

[23]  A. Rich,et al.  7-Methylguanine in poly(dG-dC).poly(dG-dC) facilitates z-DNA formation. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[24]  P. Takacs,et al.  Z-DNA: vacuum ultraviolet circular dichroism. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[25]  J. Greve,et al.  CD spectra of “alternating B‐” and “Z”‐DNA , 1981 .

[26]  E. Sage,et al.  Conformational changes of poly(dG-dC) . poly(dG-dC) modified by the carcinogen N-acetoxy-N-acetyl-2-aminofluorene. , 1981, Nucleic acids research.

[27]  A. Rich,et al.  Induction of the Z conformation in poly(dG-dC).poly(dG-dC) by binding of N-2-acetylaminofluorene to guanine residues. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[28]  B. H. Pheiffer,et al.  Does DNA adopt the C form in concentrated salt solutions or in organic solvent water mixtures? An x-ray diffraction study of DNA fibers immersed in various media. , 1980, Journal of molecular biology.

[29]  E. Paleček,et al.  Salt-induced conformational changes of poly(dA-dT). , 1980, Nucleic acids research.

[30]  E. Sage,et al.  Conformation of poly(dG-dC) . poly(dG-dC) modified by the carcinogens N-acetoxy-N-acetyl-2-aminofluorene and N-hydroxy-N-2-aminofluorene. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[31]  A. Leslie,et al.  Left-handed DNA helices , 1980, Nature.

[32]  Jacques H. van Boom,et al.  Molecular structure of a left-handed double helical DNA fragment at atomic resolution , 1979, Nature.

[33]  W. C. Johnson,et al.  Conformation and circular dichroism of DNA , 1979, Biopolymers.

[34]  J. Sutherland Biophysical Spectroscopy in the Visible and Ultraviolet Using Synchrotron Radiation , 1979 .

[35]  J. Sutherland,et al.  Magnetic circular dichroism of netropsin and natural circular dichroism of the netropsin-DNA complex. , 1978, Biochemistry.

[36]  J. C. Johnson Circular Dichroism Spectroscopy and the Vacuum Ultraviolet Region , 1978 .

[37]  E. S. Stevens [9] Far (vacuum) ultraviolet circular dichroism , 1978 .

[38]  E. S. Stevens Far (vacuum) ultraviolet circular dichroism. , 1978, Methods in enzymology.

[39]  W C Johnson,et al.  Circular dichroism of the nucleic acid monomers , 1977, Biopolymers.

[40]  M. Tomasz,et al.  Circular dichroism of mitomycin-DNA complexes. Evidence for a conformational change in DNA. , 1977, Biochemistry.

[41]  W. C. Johnson,et al.  Circular dichroism of DNA in the vacuum ultraviolet. , 1974, Journal of molecular biology.

[42]  J. T. Yang,et al.  A computer probe of the circular dichroic bands of nucleic acids in the ultraviolet region. II. Double-stranded ribonucleic acid and deoxyribonucleic acid. , 1974, Biochemistry.

[43]  J. T. Yang,et al.  A computer probe of the circular dichroic bands of nucleic acids in the ultraviolet region. I. Transfer ribonucleic acid. , 1974, Biochemistry.

[44]  T M Jovin,et al.  Salt-induced co-operative conformational change of a synthetic DNA: equilibrium and kinetic studies with poly (dG-dC). , 1972, Journal of molecular biology.

[45]  F. S. Allen,et al.  The ultraviolet circular dichroism of some natural DNAs and an analysis of the spectra for sequence information , 1972, Biopolymers.

[46]  R. Langridge,et al.  Physical and Enzymatic Studies on Poly d(I–C).Poly d(I–C), an Unusual Double-helical DNA , 1970, Nature.

[47]  W. Gratzer,et al.  Circular dichroism of DNA. , 1970, European journal of biochemistry.

[48]  W. C. Johnson,et al.  Circular dichroism of polynucleotides: A simple theory , 1969 .

[49]  T. Samejima,et al.  OPTICAL ROTATORY DISPERSION AND CONFORMATION OF DEOXYRIBONUCLEIC AND RIBONUCLEIC ACIDS FROM VARIOUS SOURCES. , 1965, The Journal of biological chemistry.