A Parameter-Free Model Comparison Test Using Differential Algebra

We present a method for rejecting competing models from noisy time-course data that does not rely on parameter inference. First we characterize ordinary differential equation models in only measurable variables using differential-algebra elimination. This procedure gives input-output equations, which serve as invariants for time series data. We develop a model comparison test using linear algebra and statistics to reject incorrect models from their invariants. This algorithm exploits the dynamic properties that are encoded in the structure of the model equations without recourse to parameter values, and, in this sense, the approach is parameter-free. We demonstrate this method by discriminating between different models from mathematical biology.

[1]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[2]  Teuta Pilizota,et al.  Inferring time derivatives including cell growth rates using Gaussian processes , 2016, Nature Communications.

[3]  François Boulier,et al.  Representation for the radical of a finitely generated differential ideal , 1995, ISSAC '95.

[4]  W. Marsden I and J , 2012 .

[5]  B. L. Clarke Stoichiometric network analysis , 2008, Cell Biophysics.

[6]  E D Gilles,et al.  Using chemical reaction network theory to discard a kinetic mechanism hypothesis. , 2005, Systems biology.

[7]  E. Kolchin Differential Algebra and Algebraic Groups , 2012 .

[8]  K. R. Godfrey,et al.  Identifiability and indistinguishability of linear compartmental models , 1990 .

[9]  Seth Sullivant,et al.  Lectures on Algebraic Statistics , 2008 .

[10]  J. Kepler Relations between Gröbner bases, differential Gröbner bases, and differential characteristic sets , 2010 .

[11]  Joel A. Tropp,et al.  User-Friendly Tail Bounds for Sums of Random Matrices , 2010, Found. Comput. Math..

[12]  G. Carrà Ferro,et al.  Differential Gröbner bases in one variable and in the partial case , 1997 .

[13]  Sette Diop,et al.  Differential-Algebraic Decision Methods and some Applications to System Theory , 1992, Theor. Comput. Sci..

[14]  Maria Pia Saccomani,et al.  Parameter identifiability of nonlinear systems: the role of initial conditions , 2003, Autom..

[15]  N. Meshkat,et al.  Alternative to Ritt's pseudodivision for finding the input-output equations of multi-output models. , 2012, Mathematical biosciences.

[16]  Ling Zhang,et al.  Indistinguishability and identifiability analysis of linear compartmental models. , 1991, Mathematical biosciences.

[17]  Jeremy Gunawardena,et al.  Distributivity and processivity in multisite phosphorylation can be distinguished through steady-state invariants. , 2007, Biophysical journal.

[18]  Seth Sullivant,et al.  Identifiability Results for Several Classes of Linear Compartment Models , 2014, Bulletin of Mathematical Biology.

[19]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[20]  M. Feinberg Chemical reaction network structure and the stability of complex isothermal reactors—I. The deficiency zero and deficiency one theorems , 1987 .

[21]  Jeremy Gunawardena,et al.  The geometry of multisite phosphorylation. , 2008, Biophysical journal.

[22]  M. Feinberg Chemical reaction network structure and the stability of complex isothermal reactors—II. Multiple steady states for networks of deficiency one , 1988 .

[23]  J. Ritt Partial differential algebra , 1950 .

[24]  Marc Moreno Maza,et al.  A bound for the Rosenfeld-Gröbner algorithm , 2008, J. Symb. Comput..

[25]  François Ollivier,et al.  Standard Bases of Differential Ideals , 1990, AAECC.

[26]  I. Kaplansky An introduction to differential algebra , 1957 .

[27]  Kenneth L. Ho,et al.  Parameter-free model discrimination criterion based on steady-state coplanarity , 2011, Proceedings of the National Academy of Sciences.

[28]  F. Ollivier Le probleme de l'identifiabilite structurelle globale : approche theorique, methodes effectives et bornes de complexite , 1990 .

[29]  Keith R. Godfrey,et al.  Structural indistinguishability between uncontrolled (autonomous) nonlinear analytic systems , 2004, Autom..

[30]  Nonlinear Compartmental Model Indistinguishability , 1994 .

[31]  Erica J. Graham,et al.  Parameter-free methods distinguish Wnt pathway models and guide design of experiments , 2015 .

[32]  H. Akaike A new look at the statistical model identification , 1974 .

[33]  Giuseppa Carrà Ferro Groebner Bases and Differential Algebra , 1987, AAECC.

[34]  Bernd Sturmfels,et al.  Algebraic Systems Biology: A Case Study for the Wnt Pathway , 2015, Bulletin of Mathematical Biology.

[35]  Lennart Ljung,et al.  On global identifiability for arbitrary model parametrizations , 1994, Autom..