3D measurement of micromechanical devices vibration mode shapes with a stroboscopic interferometric microscope

Abstract Microscopic interferometry is a powerful technique for the static and dynamic characterization of micromechanical devices. In this paper we emphasize its capabilities for 3D vibration mode shapes profiling of Al cantilever microbeams and Cr micromachined membranes. It is demonstrated that time-resolved measurements up to 800 kHz can be performed with a lateral resolution in the micrometer range and a vibration amplitude detection limit of 3–5 nm. In addition, with reduced image sizes (256×256), quasi-real time (150–500 ms) visualization of the vibration mode 3D profiles becomes possible. These performances were obtained by using stroboscopic illumination with an array of superluminescent LED and an optimized automatic fast Fourier transform phase demodulation of the interferograms. The results are compared with theoretical shapes of the vibration modes and with point measurements of the vibration spectra.

[1]  B. Culshaw,et al.  Measurement of the mechanical properties of silicon microresonators , 1991 .

[2]  M. Tudor,et al.  Analysis of an interferometric optical fibre detection technique applied to silicon vibrating sensors , 1987 .

[3]  E N Ribak,et al.  Interference microscopy and Fourier fringe analysis applied to measuring the spatial refractive-index distribution. , 1993, Applied optics.

[4]  Alain Chabrier,et al.  Versatile microscopic profilometer-vibrometer for static and dynamic characterization of micromechanical devices , 1999, Industrial Lasers and Inspection.

[5]  M. Takeda,et al.  Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry , 1982 .

[6]  David Wood,et al.  A system for the dynamic characterization of microstructures , 1997 .

[7]  Emil Wolf,et al.  CHAPTER X – INTERFERENCE AND DIFFRACTION WITH PARTIALLY COHERENT LIGHT , 1980 .

[8]  Tarik Bourouina,et al.  Characterization of W Films on Si and SiO2/Si Substrates by X-Ray Diffraction, AFM and Blister Test Adhesion Measurements , 1997 .

[9]  Petra Aswendt,et al.  Testing microcomponents by speckle interferometry , 1999, Industrial Lasers and Inspection.

[10]  Jean-François Manceau,et al.  Measurement of residual stresses in a plate using a vibrational technique-application to electrolytic nickel coatings , 1996 .

[11]  Ken Nakano,et al.  Visualization of 50 MHz Surface Acoustic Wave Propagation Using Stroboscopic Phase-Shift Interferometry , 1997 .

[12]  W. Macy,et al.  Two-dimensional fringe-pattern analysis. , 1983, Applied optics.

[13]  Christophe Gorecki,et al.  Interferogram analysis using a Fourier transform method for automatic 3D surface measurement , 1992 .

[14]  Ryszard J. Pryputniewicz,et al.  Holographic microscope for measuring displacements of vibrating microbeams using time-averaged, electro-optic holography , 1998 .

[15]  D. C. Emmony,et al.  Active feedback stabilisation of a Michelson interferometer using a flexure element , 1985 .

[16]  C. Sheppard,et al.  Effect of numerical aperture on interference fringe spacing. , 1995, Applied optics.

[17]  Dennis C. Ghiglia,et al.  Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software , 1998 .

[18]  K A Nugent,et al.  Interferogram analysis using an accurate fully automatic algorithm. , 1985, Applied optics.

[19]  Daniel M. Edmans,et al.  MEMS metrology station based on two interferometers , 1997, Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components.

[20]  Thomas Kreis,et al.  Digital holographic interference-phase measurement using the Fourier-transform method , 1986 .

[21]  K. Creath Temporal Phase Measurement Methods , 1993 .

[22]  J J Talamonti,et al.  Numerical model estimating the capabilities and limitations of the fast Fourier transform technique in absolute interferometry. , 1996, Applied optics.

[23]  Yang Yifan,et al.  Determination of the mechanical properties of microstructures , 1996 .

[24]  D J Bone,et al.  Fringe-pattern analysis using a 2-D Fourier transform. , 1986, Applied optics.

[25]  Y. N. Ning,et al.  DESIGN NOTE: Fringe beating effects induced by misalignment in a white-light interferometer , 1996 .

[26]  F Roddier,et al.  Interferogram analysis using Fourier transform techniques. , 1987, Applied optics.

[27]  W. Ko,et al.  Aging phenomena in heavily doped (p+) micromachined silicon cantilever beams , 1992 .

[28]  L. Nicu,et al.  EXPERIMENTAL AND THEORETICAL INVESTIGATIONS ON NONLINEAR RESONANCES OF COMPOSITE BUCKLED MICROBRIDGES , 1999 .

[29]  K. Petersen,et al.  Young’s modulus measurements of thin films using micromechanics , 1979 .

[31]  E. Wolf,et al.  Principles of Optics (7th Ed) , 1999 .

[32]  M. Takeda,et al.  Fourier transform profilometry for the automatic measurement of 3-D object shapes. , 1983, Applied optics.

[33]  Alain Bosseboeuf,et al.  Characterization of residual stress in metallic films on silicon with micromechanical devices , 1996, Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components.

[34]  S. Bouwstra,et al.  On the resonance frequencies of microbridges , 1991, TRANSDUCERS '91: 1991 International Conference on Solid-State Sensors and Actuators. Digest of Technical Papers.

[35]  Hideki Kawakatsu,et al.  Applications of dynamic techniques for accurate determination of silicon nitride Young's moduli , 1997, Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97).

[36]  J. Sader Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope , 1998 .

[37]  Wolfgang Osten,et al.  Qualification of optical measurement techniques for the investigation of material parameters of microcomponents , 1999, Industrial Lasers and Inspection.

[38]  S M Pandit,et al.  Data-dependent-systems and Fourier-transform methods for single-interferogram analysis. , 1995, Applied optics.