Challenges and prospects of 3D micro-supercapacitors for powering the internet of things

The fabrication of miniaturized electrochemical energy storage systems is essential for the development of future electronic devices for Internet of Things applications where connected devices are increasingly deployed in our daily life. On chip micro-supercapacitors are an attractive solution to fulfill the energy requirements of autonomous, smart, maintenance free and miniaturized sensors but they suffer from a limited energy density and poor technological readiness level in spite of high power capabilities and long cycle life. This paper aims at reviewing the current micro-supercapacitor technologies and at defining the guidelines to produce high performance micro-devices with special focus on 3D designs as well as the fabrication of solid state miniaturized devices to solve the packaging issue.

[1]  Fabrication and tests of a three-dimensional microsupercapacitor using SU-8 photoresist as the separator , 2012 .

[2]  Alex C. MacRae,et al.  Effect of Surface Modification on Nano-Structured LiNi(0.5)Mn(1.5)O4 Spinel Materials. , 2015, ACS applied materials & interfaces.

[3]  Mathieu Toupin,et al.  Influence of Microstucture on the Charge Storage Properties of Chemically Synthesized Manganese Dioxide , 2002 .

[4]  David Pech,et al.  3D RuO2 Microsupercapacitors with Remarkable Areal Energy , 2015, Advanced materials.

[5]  Dominique Guyomard,et al.  Toward fast and cost-effective ink-jet printing of solid electrolyte for lithium microbatteries , 2015 .

[6]  A. Best,et al.  Conducting-polymer-based supercapacitor devices and electrodes , 2011 .

[7]  Yongsung Ji,et al.  High‐Performance Pseudocapacitive Microsupercapacitors from Laser‐Induced Graphene , 2016, Advanced materials.

[8]  Pierre-Louis Taberna,et al.  Continuous carbide-derived carbon films with high volumetric capacitance , 2011 .

[9]  M. Ishikawa,et al.  High/low temperature operation of electric double layer capacitor utilizing acidic cellulose–chitin hybrid gel electrolyte , 2010 .

[10]  Pedro P. Irazoqui,et al.  A Review of Graphene‐Based Electrochemical Microsupercapacitors , 2014 .

[11]  D. Pech,et al.  Realization of an Asymmetric Interdigitated Electrochemical Micro-Capacitor Based on Carbon Nanotubes and Manganese Oxide , 2015 .

[12]  M. Prunnila,et al.  Nano fabricated silicon nanorod array with titanium nitride coating for on-chip supercapacitors , 2016 .

[13]  Y. Gogotsi,et al.  True Performance Metrics in Electrochemical Energy Storage , 2011, Science.

[14]  Jim P. Zheng,et al.  The Effect of Salt Concentration in Electrolytes on the Maximum Energy Storage for Double Layer Capacitors , 1997 .

[15]  Husam N. Alshareef,et al.  All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage , 2016, Energy & Environmental Science.

[16]  Makoto Ue,et al.  Chemical Capacitors and Quaternary Ammonium Salts , 2007 .

[17]  François Béguin,et al.  Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2 V in aqueous medium , 2006 .

[18]  Christophe Lethien,et al.  Tuning the Cation Ordering with the Deposition Pressure in Sputtered LiMn1.5Ni0.5O4 Thin Film Deposited on Functional Current Collectors for Li-Ion Microbattery Applications , 2017 .

[19]  Mathieu Toupin,et al.  Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor , 2004 .

[20]  Caiwei Shen,et al.  Micro supercapacitors based on a 3D structure with symmetric graphene or activated carbon electrodes , 2013 .

[21]  Goangseup Zi,et al.  High-density, stretchable, all-solid-state microsupercapacitor arrays. , 2014, ACS nano.

[22]  F. Kremer,et al.  Enhanced charge transport in nano-confined ionic liquids , 2012 .

[23]  T. Fujita,et al.  Three-dimensional bicontinuous nanoporous Au/polyaniline hybrid films for high-performance electrochemical supercapacitors , 2012 .

[24]  A. Ponrouch,et al.  Ultra high capacitance values of Pt@RuO2 core–shell nanotubular electrodes for microsupercapacitor applications , 2013 .

[25]  Peihua Huang,et al.  On-chip and freestanding elastic carbon films for micro-supercapacitors , 2016, Science.

[26]  John B. Goodenough,et al.  Supercapacitor Behavior with KCl Electrolyte , 1999 .

[27]  J. Pierson,et al.  VN thin films as electrode materials for electrochemical capacitors , 2014 .

[28]  K. Komvopoulos,et al.  High-energy-density, all-solid-state microsupercapacitors with three-dimensional interdigital electrodes of carbon/polymer electrolyte composite , 2016, Nanotechnology.

[29]  Liwei Lin,et al.  ALD titanium nitride on vertically aligned carbon nanotube forests for electrochemical supercapacitors , 2016 .

[30]  Klaus Müllen,et al.  Graphene-based in-plane micro-supercapacitors with high power and energy densities , 2013, Nature Communications.

[31]  D. Rhodes,et al.  Superconductivity with extremely large upper critical fields in Nb$_{2}$Pd$_{0.81}$S$_{5}$ , 2013 .

[32]  S. Trasatti,et al.  Ruthenium dioxide-based film electrodes , 1978 .

[33]  Y. Gogotsi,et al.  Partial breaking of the Coulombic ordering of ionic liquids confined in carbon nanopores , 2017, Nature materials.

[34]  Bruce Dunn,et al.  Three-dimensional battery architectures. , 2004, Chemical reviews.

[35]  D. Garcia-Alonso,et al.  Atomic layer deposition for photovoltaics: applications and prospects for solar cell manufacturing , 2012 .

[36]  F. Béguin,et al.  Redox active electrolytes in carbon/carbon electrochemical capacitors , 2018, Current Opinion in Electrochemistry.

[37]  P. Ajayan,et al.  Supercapacitor Operating At 200 Degrees Celsius , 2013, Scientific Reports.

[38]  A. Taubert Electrospinning of Ionogels: Current Status and Future Perspectives , 2015 .

[39]  Jing Xu,et al.  A flexible integrated photodetector system driven by on-chip microsupercapacitors , 2015 .

[40]  Daeil Kim,et al.  Air-stable, high-performance, flexible microsupercapacitor with patterned ionogel electrolyte. , 2015, ACS applied materials & interfaces.

[41]  Tong Zhang,et al.  High-rate in-plane micro-supercapacitors scribed onto photo paper using in situ femtolaser-reduced graphene oxide/Au nanoparticle microelectrodes , 2016 .

[42]  Pierre-Louis Taberna,et al.  Solvent-Free Electrolytes for Electrical Double Layer Capacitors , 2015 .

[43]  Liwei Lin,et al.  Highly active ruthenium oxide coating via ALD and electrochemical activation in supercapacitor applications , 2015 .

[44]  Mathieu Toupin,et al.  A Hybrid Activated Carbon-Manganese Dioxide Capacitor using a Mild Aqueous Electrolyte , 2004 .

[45]  D. Pech,et al.  Wafer-level fabrication process for fully encapsulated micro-supercapacitors with high specific energy , 2012 .

[46]  Anurag Agarwal,et al.  The Internet of Things—A survey of topics and trends , 2015, Inf. Syst. Frontiers.

[47]  Prashant N. Kumta,et al.  Fast and Reversible Surface Redox Reaction in Nanocrystalline Vanadium Nitride Supercapacitors , 2006 .

[48]  Zaiping Guo,et al.  3D Hierarchical Porous α‐Fe2O3 Nanosheets for High‐Performance Lithium‐Ion Batteries , 2015 .

[49]  P. Ajayan,et al.  Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. , 2011, Nature nanotechnology.

[50]  Dingshan Yu,et al.  Scalable synthesis of hierarchically structured carbon nanotube–graphene fibres for capacitive energy storage , 2014, Nature Nanotechnology.

[51]  G. Bidan,et al.  Solder-reflow resistant solid-state micro-supercapacitors based on ionogels , 2016 .

[52]  Roya Maboudian,et al.  Selective ultrathin carbon sheath on porous silicon nanowires: materials for extremely high energy density planar micro-supercapacitors. , 2014, Nano letters.

[53]  David Blaauw,et al.  Autonomous Microsystems for Downhole Applications: Design Challenges, Current State, and Initial Test Results , 2017, Italian National Conference on Sensors.

[54]  M. El‐Kady,et al.  Direct preparation and processing of graphene/RuO2 nanocomposite electrodes for high-performance capacitive energy storage , 2015 .

[55]  Chaohe Xu,et al.  Graphene-based electrodes for electrochemical energy storage , 2013 .

[56]  Christina M. Jones,et al.  Nanostructured all-solid-state supercapacitor based on Li2S-P2S5 glass-ceramic electrolyte , 2012 .

[57]  Dimos Poulikakos,et al.  Highly flexible, all solid-state micro-supercapacitors from vertically aligned carbon nanotubes , 2014, Nanotechnology.

[58]  J. Bates Thin-Film Lithium and Lithium-Ion Batteries , 2000 .

[59]  S. George Atomic layer deposition: an overview. , 2010, Chemical reviews.

[60]  Shuang Li,et al.  Alternating Stacked Graphene‐Conducting Polymer Compact Films with Ultrahigh Areal and Volumetric Capacitances for High‐Energy Micro‐Supercapacitors , 2015, Advanced materials.

[61]  A. Balducci,et al.  Perspective—A Guideline for Reporting Performance Metrics with Electrochemical Capacitors: From Electrode Materials to Full Devices , 2017 .

[62]  M. Boujtita,et al.  Titanium nitride films for micro-supercapacitors: Effect of surface chemistry and film morphology on the capacitance , 2015 .

[63]  Junwei Ding,et al.  3D Printing Quasi‐Solid‐State Asymmetric Micro‐Supercapacitors with Ultrahigh Areal Energy Density , 2018 .

[64]  Norbert Fabre,et al.  Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor , 2010 .

[65]  J. Thornton The microstructure of sputter-deposited coatings , 1986 .

[66]  E. Raymundo-Piñero,et al.  Grape seed carbons for studying the influence of texture on supercapacitor behaviour in aqueous electrolytes , 2014 .

[67]  T. Brousse,et al.  High Areal Energy 3D‐Interdigitated Micro‐Supercapacitors in Aqueous and Ionic Liquid Electrolytes , 2017 .

[68]  Young Soo Yoon,et al.  Thin Film Supercapacitors Using a Sputtered RuO2 Electrode , 2001 .

[69]  P. Pickup,et al.  Ru oxide/carbon fabric composites for supercapacitors , 2010 .

[70]  Jimin Maeng,et al.  Three-Dimensional Microcavity Array Electrodes for High-Capacitance All-Solid-State Flexible Microsupercapacitors. , 2016, ACS applied materials & interfaces.

[71]  Vincent De Andrade,et al.  Atomic Layer Deposition of Functional Layers for on Chip 3D Li‐Ion All Solid State Microbattery , 2017 .

[72]  T. Brousse,et al.  All Solid-State Symmetrical Activated Carbon Electrochemical Double Layer Capacitors Designed with Ionogel Electrolyte , 2014 .

[73]  Wendy G. Pell,et al.  Self-discharge and potential recovery phenomena at thermally and electrochemically prepared RuO2 supercapacitor electrodes , 1997 .

[74]  Daniel A. Steingart,et al.  Review—Power Sources for the Internet of Things , 2018 .

[75]  Chunlei Wang,et al.  Fabrication and properties of a carbon/polypyrrole three-dimensional microbattery , 2008 .

[76]  M. Beidaghi,et al.  Micro‐Supercapacitors Based on Interdigital Electrodes of Reduced Graphene Oxide and Carbon Nanotube Composites with Ultrahigh Power Handling Performance , 2012 .

[77]  Sang Bok Lee,et al.  An all-in-one nanopore battery array. , 2014, Nature nanotechnology.

[78]  P. Taberna,et al.  Non-aqueous gel polymer electrolyte with phosphoric acid ester and its application for quasi solid-state supercapacitors , 2015 .

[79]  Wenping Si,et al.  On chip, all solid-state and flexible micro-supercapacitors with high performance based on MnOx/Au multilayers , 2013 .

[80]  Barbara Laïk,et al.  Application of sputtered ruthenium nitride thin films as electrode material for energy-storage devices , 2013 .

[81]  Antonio Iera,et al.  The Internet of Things: A survey , 2010, Comput. Networks.

[82]  Dirk Uwe Sauer,et al.  Detailed analysis of the self-discharge of supercapacitors , 2011 .

[83]  I. Stępniak,et al.  Electrochemical characteristics of a new electric double layer capacitor with acidic polymer hydrogel electrolyte , 2011 .

[84]  Kun-Hong Lee,et al.  Fabrication of all-solid-state electrochemical microcapacitors , 2004 .

[85]  G. Bidan,et al.  3D hierarchical assembly of ultrathin MnO2 nanoflakes on silicon nanowires for high performance micro-supercapacitors in Li- doped ionic liquid , 2015, Scientific Reports.

[86]  Zheng Yan,et al.  3-Dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance. , 2013, Nano letters.

[87]  H. Sirringhaus,et al.  All‐Inkjet‐Printed, All‐Air‐Processed Solar Cells , 2014 .

[88]  G. Bidan,et al.  An innovative 3-D nanoforest heterostructure made of polypyrrole coated silicon nanotrees for new high performance hybrid micro-supercapacitors , 2015 .

[89]  F. Kang,et al.  A high-energy-density micro supercapacitor of asymmetric MnO2–carbon configuration by using micro-fabrication technologies , 2013 .

[90]  M. El‐Kady,et al.  Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage , 2013, Nature Communications.

[91]  Majid Beidaghi,et al.  Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors , 2014 .

[92]  Sergei V. Kalinin,et al.  Nanoscale mapping of ion diffusion in a lithium-ion battery cathode. , 2010, Nature nanotechnology.

[93]  P. Simon,et al.  Energy applications of ionic liquids , 2014 .

[94]  P. Soudan,et al.  Hybrid Silica–Polymer Ionogel Solid Electrolyte with Tunable Properties , 2014 .

[95]  Bruno Scrosati,et al.  Ionic-liquid materials for the electrochemical challenges of the future. , 2009, Nature materials.

[96]  S. Lofland,et al.  Micro-supercapacitors from carbide derived carbon (CDC) films on silicon chips , 2013 .

[97]  N. Rolland,et al.  Micro-patterning of LiPON and lithium iron phosphate material deposited onto silicon nanopillars array for lithium ion solid state 3D micro-battery , 2011 .

[98]  Brigitte Pecquenard,et al.  High‐Performance All‐Solid‐State Cells Fabricated With Silicon Electrodes , 2012 .

[99]  K. Edström,et al.  3D lithium ion batteries{from fundamentals to fabrication , 2011 .

[100]  Peihua Huang,et al.  Electrochemical behavior of high performance on-chip porous carbon films for micro-supercapacitors applications in organic electrolytes , 2016 .

[101]  Reza Ghodssi,et al.  Hierarchical three-dimensional microbattery electrodes combining bottom-up self-assembly and top-down micromachining. , 2012, ACS nano.

[102]  Fred Roozeboom,et al.  High Energy Density All‐Solid‐State Batteries: A Challenging Concept Towards 3D Integration , 2008 .

[103]  Young Soo Yoon,et al.  All solid-state rechargeable thin-film microsupercapacitor fabricated with tungsten cosputtered ruthenium oxide electrodes , 2003 .

[104]  P. Taberna,et al.  Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer , 2006, Science.

[105]  T. Brousse,et al.  MnO2 Thin Films on 3D Scaffold: Microsupercapacitor Electrodes Competing with “Bulk” Carbon Electrodes , 2015 .

[106]  Q. Jiang,et al.  Remarkable Improvements in Volumetric Energy and Power of 3D MnO2 Microsupercapacitors by Tuning Crystallographic Structures , 2016 .

[107]  P. Kauranen,et al.  Conformal titanium nitride in a porous silicon matrix: A nanomaterial for in-chip supercapacitors , 2016, 1603.00798.

[108]  A. Glushenkov,et al.  Bimetallic molybdenum tungsten oxynitride: structure and electrochemical properties , 2013 .

[109]  P. Rolland,et al.  Further studies on the lithium phosphorus oxynitride solid electrolyte , 2010 .

[110]  C. Ye,et al.  3D Interdigital Au/MnO2 /Au Stacked Hybrid Electrodes for On-Chip Microsupercapacitors. , 2016, Small.

[111]  J. Pierson,et al.  Asymmetric electrochemical capacitor microdevice designed with vanadium nitride and nickel oxide thin film electrodes , 2013 .

[112]  Hui-Ming Cheng,et al.  Recent advances in graphene-based planar micro-supercapacitors for on-chip energy storage , 2014 .

[113]  Chongyin Yang,et al.  Niobium Nitride Nb4N5 as a New High‐Performance Electrode Material for Supercapacitors , 2015, Advanced science.

[114]  G. Wallace,et al.  Self‐Assembly of Flexible Free‐Standing 3D Porous MoS2‐Reduced Graphene Oxide Structure for High‐Performance Lithium‐Ion Batteries , 2017 .

[115]  A new conducting salt for high voltage propylene carbonate-based electrochemical double layer capacitors , 2013 .

[116]  Michael Holzapfel,et al.  An in situ Raman study of the intercalation of supercapacitor-type electrolyte into microcrystalline graphite , 2006 .

[117]  A. Balducci,et al.  Characterization of different conductive salts in ACN‐based electrolytes for electrochemical double layer capacitors , 2016 .

[118]  M. Antonietti,et al.  Innovative polyelectrolytes/poly(ionic liquid)s for energy and environment , 2017 .

[119]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[120]  Jee Youn Hwang,et al.  Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage , 2015, Proceedings of the National Academy of Sciences.

[121]  B. Conway,et al.  Reversibility and Growth Behavior of Surface Oxide Films at Ruthenium Electrodes , 1978 .

[122]  T. Brousse,et al.  On Chip Interdigitated Micro‐Supercapacitors Based on Sputtered Bifunctional Vanadium Nitride Thin Films with Finely Tuned Inter‐ and Intracolumnar Porosities , 2018, Advanced Materials Technologies.

[123]  N. Uvarov,et al.  All-solid-state asymmetric supercapacitors with solid composite electrolytes , 2013 .

[124]  F. Béguin,et al.  Sustainable Carbon/Carbon Supercapacitors Operating Down to -40 °C in Aqueous Electrolyte Made with Cholinium Salt. , 2018, ChemSusChem.

[125]  A. Balducci,et al.  Physical-Chemical Characterization of Binary Mixtures of 1-Butyl-1-methylpyrrolidinium Bis{(trifluoromethyl)sulfonyl}imide and Aliphatic Nitrile Solvents as Potential Electrolytes for Electrochemical Energy Storage Applications , 2017 .

[126]  Feiyu Kang,et al.  A high-performance three-dimensional micro supercapacitor based on self-supporting composite materia , 2011 .

[127]  N. Dupré,et al.  Destructuring ionic liquids in ionogels: enhanced fragility for solid devices. , 2014, Physical chemistry chemical physics : PCCP.

[128]  P. Soudan,et al.  Solid‐State Electrode Materials with Ionic‐Liquid Properties for Energy Storage: the Lithium Solid‐State Ionic‐Liquid Concept. , 2011 .

[129]  Cheng Yang,et al.  Scalable fabrication of MnO2 nanostructure deposited on free-standing Ni nanocone arrays for ultrathin, flexible, high-performance micro-supercapacitor , 2014 .

[130]  F. Favier,et al.  Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors. , 2017, Nature materials.

[131]  A. Balducci,et al.  Ionic liquids in supercapacitors , 2013 .

[132]  P. Taberna,et al.  Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors , 2010, Science.

[133]  Grzegorz Lota,et al.  Novel insight into neutral medium as electrolyte for high-voltage supercapacitors , 2012 .

[134]  Gleb Yushin,et al.  Atomic layer deposition of vanadium oxide on carbon nanotubes for high-power supercapacitor electrodes , 2012 .

[135]  Jean Le Bideau,et al.  Biopolymer based nanocomposite ionogels: high performance, sustainable and solid electrolytes , 2014 .

[136]  M. Watanabe,et al.  Protic ionic liquids: Fuel cell applications , 2013 .

[137]  A. Balducci,et al.  The Influence of Conductive Salt Ion Selection on EDLC Electrolyte Characteristics and Carbon-Electrolyte Interaction , 2015 .

[138]  F. Kang,et al.  Flexible, temperature-tolerant supercapacitor based on hybrid carbon film electrodes , 2017 .

[139]  Claudia Felser,et al.  Weyl Semimetals as Hydrogen Evolution Catalysts , 2017, Advanced materials.

[140]  N. Dupré,et al.  Enhancement of lithium transport by controlling the mesoporosity of silica monoliths filled by ionic liquids , 2016 .

[141]  P. Taberna,et al.  Relation between the ion size and pore size for an electric double-layer capacitor. , 2008, Journal of the American Chemical Society.

[142]  Chunlei Wang,et al.  Micro-supercapacitors based on three dimensional interdigital polypyrrole/C-MEMS electrodes , 2011 .

[143]  Xu Xu,et al.  Arbitrary Shape Engineerable Spiral Micropseudocapacitors with Ultrahigh Energy and Power Densities , 2015, Advanced materials.

[144]  Peihua Huang,et al.  Sputtered Titanium Carbide Thick Film for High Areal Energy on Chip Carbon‐Based Micro‐Supercapacitors , 2017 .

[145]  W. Henderson,et al.  Cycling stability of a hybrid activated carbon//poly(3-methylthiophene) supercapacitor with N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid as electrolyte , 2005 .

[146]  Peihua Huang,et al.  Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. , 2010, Nature nanotechnology.

[147]  Pierre-Louis Taberna,et al.  On-chip micro-supercapacitors for operation in a wide temperature range , 2013 .

[148]  G. Meligrana,et al.  UV-curable siloxane-acrylate gel-copolymer electrolytes for lithium-based battery applications , 2010 .

[149]  James W. Evans,et al.  Micropower Materials Development for Wireless Sensor Networks , 2008 .

[150]  Brian E. Conway,et al.  Behavior of Molybdenum Nitrides as Materials for Electrochemical Capacitors Comparison with Ruthenium Oxide , 1998 .

[151]  J. Thornton High Rate Thick Film Growth , 1977 .

[152]  P. Irazoqui,et al.  Ultrasmall Integrated 3D Micro‐Supercapacitors Solve Energy Storage for Miniature Devices , 2014 .

[153]  A. Hollenkamp,et al.  Chemical Bonding and Physical Trapping of Sulfur in Mesoporous Magnéli Ti4O7 Microspheres for High‐Performance Li–S Battery , 2017 .

[154]  Young Soo Yoon,et al.  Solid-state thin-film supercapacitor with ruthenium oxide and solid electrolyte thin films , 2001 .

[155]  X. Sun,et al.  Elegant design of electrode and electrode/electrolyte interface in lithium-ion batteries by atomic layer deposition , 2015, Nanotechnology.

[156]  Maurizio Biso,et al.  Safe, high-energy supercapacitors based on solvent-free ionic liquid electrolytes , 2008 .

[157]  D. Pech,et al.  Hydrous RuO2/carbon nanowalls hierarchical structures for all-solid-state ultrahigh-energy-density micro-supercapacitors , 2014 .

[158]  Goangseup Zi,et al.  Biaxially stretchable, integrated array of high performance microsupercapacitors. , 2014, ACS nano.

[159]  W. Chueh,et al.  High electrode activity of nanostructured, columnar ceria films for solid oxide fuel cells , 2012 .

[160]  M. El‐Kady,et al.  Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors , 2012, Science.

[161]  N. Rolland,et al.  Silicon‐Microtube Scaffold Decorated with Anatase TiO2 as a Negative Electrode for a 3D Litium‐Ion Microbattery , 2014 .

[162]  Jeffrey W. Long,et al.  To Be or Not To Be Pseudocapacitive , 2015 .