Modelling of liquid phases and metal distributions in copper converters: transferring process fundamentals to plant practice

ABSTRACT The quantity and accuracy of fundamental data available on copper smelting and converting systems has greatly increased over the past several decades. Engineers need no longer rely on approximations and interpolation of chemical behaviour from idealised or simplified low-order systems. Sophisticated thermodynamic databases and dedicated thermodynamic computer platforms make it possible to predict the outcomes of complex multicomponent, multiphase reactions, and to present this information in forms that are useful for industrial practice. In the present paper a summary and review of phase equilibria data on key Cu-Fe-O-S sub-systems including Ca, Si and minor elements, is provided, as are examples of the application of thermodynamic and thermochemical calculations to the modelling of copper converting. As further information on chemical behaviour and integration with process models become available these sophisticated predictive tools and approaches will become increasingly used to improve metallurgical process design and efficiency, and to optimise the productivity of integrated copper production operations.

[1]  G. Akdogan,et al.  Modelling of mixing, mass transfer and phase distribution in a Peirce–Smith converter model , 2013 .

[2]  F. Bar,et al.  Solubility of oxygen in copper mattes , 1971 .

[3]  Guven Akdogan,et al.  Sonic injection into a PGM Peirce-Smith converter: CFD modelling and industrial trials , 2015 .

[4]  A. Pelton,et al.  Thermodynamic optimisation of the FeO–Fe2O3–SiO2 (Fe–O–Si) system with FactSage , 2007 .

[5]  K. Itagaki,et al.  SOLUBILITY OF COPPER OR NICKEL IN IRON-SILICATE BASE SLAG EQUILIBRATED WITH Cu_2S-FeS OR Ni_3S_2-FeS MATTE UNDER HIGH PARTIAL PRESSURES OF SO_2 , 1998 .

[6]  Y. Waseda,et al.  Thermodynamic Properties and Structure of Ferrite Slags and Their Process Implications , 1981 .

[7]  M. Selleby An assessment of the Fe-O-Si system , 1997 .

[8]  А. И. Лебедев,et al.  Синтез, структурные особенности и магнитные характеристики мезопористых композитов Fe 2 O 3 –SiO 2 , 2019, Неорганические материалы.

[9]  K. Itagaki,et al.  High Temperature Phase Relations in FeOX(X ¼ 1 and 1.33)-CaO-SiO2 Systems under Various Oxygen Partial Pressure , 2005 .

[10]  M. Reuter,et al.  Distribution of elements between copper and FeOx–CaO–SiO2 slags during pyroprocessing of WEEE: Part 2 – indium , 2014 .

[11]  F. J. Tavera,et al.  Distribution of Cu, S, O and minor elements between silica-saturated slag, matte and copper-experimental measurements , 1990 .

[12]  P. Tan Applications of thermodynamic modeling in copper converting operations , 2007 .

[13]  P. Hayes,et al.  Phase Equilibria Studies of the Cu-Fe-O-Si System in Equilibrium with Air and with Metallic Copper , 2012, Metallurgical and Materials Transactions B.

[14]  M. Nagamori Metal loss to slag: Part I. Sulfidic and oxidic dissolution of copper in fayalite slag from low grade matte , 1974, Metallurgical and Materials Transactions B.

[15]  H. Eugster,et al.  The system Fe-Si-O: Oxygen buffer calibrations to 1,500K , 1983 .

[16]  P. Mackey,et al.  Thermodynamics of Copper Matte Converting: Part II. Distribution of Au, Ag, Pb, Zn, Ni, Se, Te, Bi, Sb and As Between Copper, Matte and Slag in the Noranda Process , 1978 .

[17]  J. Chipman,et al.  Oxygen Activity in Iron Oxide Slags , 1953 .

[18]  K. Yamaguchi, Thermodynamic Study of the Equilibrium Distribution of Platinum Group Metals Between Slag and Molten Metals and Slag and Copper Matte , 2018 .

[19]  H. Sohn,et al.  The trajectories and distribution of particles in a turbulent axisymmetric gas jet injected into a flash furnace shaft , 1988 .

[20]  Juho Mäkinen,et al.  Production of Matte, White Metal, and Blister Copper by Flash Furnace , 1982 .

[21]  G. Iyengar,et al.  Chemical potentials of oxygen for fayalite-quartz-lron and fayalite-quartz-magnetite equilibria , 1989 .

[22]  B. Sundman,et al.  A reassessment of the CaFeO system , 1996 .

[23]  P. Chaubal,et al.  Thermodynamics for arsenic and antimony in copper matte converting—computer simulation , 1988 .

[24]  Compositional Fragmentation Model for the Oxidation of Sulfide Particles in a Flash Reactor , 2014, Metallurgical and Materials Transactions B.

[25]  S. Decterov,et al.  Thermodynamic assessment and database for the Cu–Fe–O–S system , 2015 .

[26]  A. Pelton,et al.  Thermodynamic modeling of the Fe-S system , 2005 .

[27]  P. Chaubal,et al.  Thermodynamics of copper matte converting: Part IV. A priori predictions of the behavior of Au, Ag, Pb, Zn, Ni, Se, Te, Bi, Sb, and As in the noranda process reactor , 1982 .

[28]  J. K. Brimacombe,et al.  Flow regimes in submerged gas injection , 1979 .

[29]  R. Schenck,et al.  Gleichgewichtsuntersuchungen über die Reduktions‐, Oxydations‐ und Kohlungsvorgänge beim Eisen. XI , 1932 .

[30]  P. Waldner Thermodynamic Modeling of the Cr-Fe-S System , 2014, Metallurgical and Materials Transactions A.

[31]  K. Obst,et al.  Untersuchungen im System CaO-FeO n als Beispiel für den Einsatz des Elektronenstrahl-Mikroanalysators zur Bestimmung der festen Phase bei Gleichgewichtsuntersuchungen in Zustandsdiagrammen , 1968 .

[32]  L. Cabri New Data on Phase Relations in the Cu-Fe-S System* , 1973 .

[33]  M. Reuter,et al.  Tin distribution during smelting of WEEE with copper scrap , 2009 .

[34]  M. Selleby An assessment of the Ca-Fe-O-Si system , 1997 .

[35]  G. Kullerud,et al.  Thermal Stability of Assemblages in the Cu—Fe—S System , 1966 .

[36]  B. Sundman,et al.  The assessment of thermodynamic parameters in the FeO and FeSiO systems , 1997 .

[37]  D. Swinbourne,et al.  Distribution of bismuth between copper and FeOx–CaO–SiO2 slags under copper converting conditions , 2013 .

[38]  J. Kapusta Submerged Gas Jet Penetration: A Study of Bubbling Versus Jetting and Side Versus Bottom Blowing in Copper Bath Smelting , 2017 .

[39]  H. Sohn Chapter 2.1 – Copper Production , 2014 .

[40]  P. Hayes,et al.  Experimental Techniques for Investigating Calcium Ferrite Slags at Metallic Copper Saturation and Application to the Systems “Cu2O”-“Fe2O3” and “Cu2O”-CaO at Metallic Copper Saturation , 2009 .

[41]  S. Decterov,et al.  Thermodynamic Assessment of Slag–Matte–Metal Equilibria in the Cu-Fe-O-S-Si System , 2018, Journal of Phase Equilibria and Diffusion.

[42]  P. Hayes,et al.  Experimental Study of Ferrous Calcium Silicate Slags: Phase Equilibria at $$ {\text{P}}_{{{\text{O}}_{2} }} $$ Between 10−5 atm and 10−7 atm , 2012 .

[43]  F. Tsukihashi,et al.  Effect of Oxygen Partial Pressure on Liquidus for the CaO-SiO2-FeOx System at 1573 K , 2004 .

[44]  P. Hayes,et al.  Experimental Study of Gas/Slag/Matte/Spinel Equilibria and Minor Elements Partitioning in the Cu-Fe-O-S-Si System , 2016 .

[45]  Marie-Aline Van Ende,et al.  FactSage thermochemical software and databases, 2010–2016 , 2016 .

[46]  P. Hayes,et al.  Experimental Investigation of Gas/Slag/Matte/Spinel Equilibria in the Cu-Fe-O-S-Si System at 1473 K (1200 °C) and P(SO2) = 0.25 atm , 2018, Metallurgical and Materials Transactions B.

[47]  M. Nagamori Metal loss to slag: Part II. oxidic dissolution of nickel in fayalite slag and thermodynamics of continuous converting of nickel-copper matte , 1974, Metallurgical and Materials Transactions B.

[48]  P. Mackey The Physical Chemistry of Copper Smelting Slags—A Review , 1982 .

[49]  R. G. Powell,et al.  Constitution of the FeO-Fe2O3-SiO2 System at Slagmaking Temperatures , 1953 .

[50]  D. A. Hewitt A redetermination of the fayalite-magnetite-quartz equilibrium between 650 degrees and 850 degrees C , 1978 .

[51]  D. Swinbourne,et al.  Computational Thermodynamics Modeling of Minor Element Distributions During Copper Flash Converting , 2012, Metallurgical and Materials Transactions B.

[52]  Fumitaka Tsukihashi,et al.  Phosphorus Partition between CaOsatd.-BaO-SiO2-FetO Slags and Liquid Iron at 1873 K , 1993 .

[53]  P. Hayes,et al.  Experimental Investigation of Gas/Slag/Matte/Tridymite Equilibria in the Cu-Fe-O-S-Si System in Controlled Gas Atmospheres: Experimental Results at 1473 K (1200 °C) and P(SO2) = 0.25 atm , 2017, Metallurgical and Materials Transactions B.

[54]  R. Shimpo,et al.  A Study on the Equilibrium between Copper Matte and Slag , 1986 .

[55]  N. L. Bowen,et al.  The system, FeO-SiO 2 , 1932 .

[56]  P. Hayes,et al.  Experimental investigation of gas/matte/spinel equilibria in the Cu–Fe–O–S system at 1250°C and P(SO2) = 0.25 atm , 2019, International Journal of Materials Research.

[57]  Y. Takeda,et al.  Distribution equilibria of minor elements between liquid copper and calcium ferrite slag , 1983 .

[58]  J. Park,et al.  Thermodynamics of Gold Dissolution Behavior in CaO-SiO2-Al2O3-MgOsat Slag System , 2015, Metallurgical and Materials Transactions B.

[59]  R. Snow,et al.  The Orthosilicate‐Iron Oxide Portion of the System CaO‐“FeO”‐SiO2 , 1955 .

[60]  P. Mackey,et al.  Distribution equilibria of Sn, Se and Te between FeO-Fe2O3-SiO2-AI2O3-CuO0.5 slag and metallic copper , 1977 .

[61]  Y. Takeda,et al.  Thermodynamics of Calcium Ferrite Slags at 1200 and 1300 , 1980 .

[62]  P. Hayes,et al.  Multicomponent Thermodynamic Databases for Complex Non-ferrous Pyrometallurgical Processes , 2018 .

[63]  P. Hayes,et al.  Phase Equilibria in Ferrous Calcium Silicate Slags: Part II. Evaluation of Experimental Data and Computer Thermodynamic Models , 2008 .

[64]  Y. Takeda,et al.  Lead solubility in FeOx-CaO-SiO2 slags at iron saturation , 2000 .

[65]  N. L. Bowen,et al.  The system CaO-FeO-SiO 2 , 1933 .

[66]  P. Hayes,et al.  Phase equilibria of “Cu2O”-“FeO”-SiO2-CaO slags at PO2 at 10-8 atm in equilibrium with metallic copper , 2012 .

[67]  J. Palacios,et al.  The solubility of copper in lime-saturated and calcium ferrite-saturated liquid iron oxide , 1993 .

[68]  A. Muan,et al.  Phase Equilibria in the System CaO‐Iron Oxide in Air and at 1 Atm. O2 Pressure , 1958 .

[69]  C. R. Masson,et al.  Thermodynamics and constitution of ferrous silicate melts , 1971 .

[70]  P. Barton Solid Solutions in the System Cu-Fe-S, Part I; The Cu-S and CuFe-S Joins , 1973 .

[71]  Thermodynamic modeling of selenide matte converting , 1997 .

[72]  J. Dutrizac Reactions in cubanite and chalcopyrite , 1976 .

[73]  M. D. Burdick Studies on the system lime-ferric oxide-silica , 1940 .

[74]  S. Decterov,et al.  Experimental Study and Thermodynamic Re-optimization of the FeO-Fe2O3-SiO2 System , 2017 .

[75]  Akira Yazawa,et al.  Distribution of Various Elements Between Copper, Matte and Slag , 1981 .

[76]  D. Swinbourne,et al.  Nickel, lead and antimony distributions between ferrous calcium silicate slag and copper at 1300°C , 2009 .

[77]  S. Jahanshahi,et al.  A thermodynamic study on cobalt containing calcium ferrite and calcium iron silicate slags at 1573 K , 2001 .

[78]  S. Goto,et al.  Equilibria between silica-saturated iron silicate slags and molten Cu-As, Cu-Sb, and Cu-Bi Alloys , 1984 .

[79]  Roberto Parra,et al.  Modeling peirce-smith converter operating costs , 2005 .

[80]  W. Davenport,et al.  Equilibrations of copper matte and fayalite slag under controlled partial pressures of SO2 , 1979 .

[81]  H. Sohn,et al.  Effects of CaO, Al2O3, and MgO additions on the copper solubility, ferric/ferrous ratio, and minor-element behavior of iron-silicate slags , 1998 .

[82]  S. Jahanshahi,et al.  Effect of Slag Basicity on Phase Equilibria and Selenium and Tellurium Distribution in Magnesia-Saturated Calcium Iron Silicate Slags , 2010 .

[83]  S. Decterov,et al.  Critical assessment and thermodynamic modeling of the Cu–O and Cu–O–S systems , 2012 .

[84]  S. Jahanshahi,et al.  Thermodynamic Modeling of Arsenic in Copper Smelting Processes , 2010 .

[85]  Y. Takeda,et al.  Distribution Behavior of Various Elements in Copper Smelting Systems , 1984 .

[86]  K. Itagaki,et al.  Activity and Activity Coefficient of Iron Oxides in the Liquid FeO-Fe2O3-CaO-SiO2 Slag Systems at Intermediate Oxygen Partial Pressures , 2007 .

[87]  R. Schuhmann,et al.  Thermodynamics of Iron-Silicate Slags: Slags Saturated with Gamma Iron , 1951 .

[88]  W. Rankin,et al.  Thermodynamics and phase relations of the Fe-O-S-Si2(sat) system at 1200 °C and the effect of copper , 1994 .

[89]  G. Richards,et al.  A kinetic model of the peirce-smith converter: Part I. Model formulation and validation , 1998 .

[90]  K. Itagaki,et al.  Phase Relations and Activity of Arsenic in Cu-Fe-S-As System at 1473 K , 2001 .

[91]  S. Decterov,et al.  Thermodynamic Optimization of the Ca-Fe-O System , 2016, Metallurgical and Materials Transactions B.

[92]  Zhang Ting’an,et al.  Effects of Blowing Conditions on the Dispersion States of Materials Charged into Bottom Blown Oxygen Smelting Furnace , 2017 .

[93]  S. Jahanshahi,et al.  Thermodynamics of Selenium and Tellurium in Calcium Ferrite Slags , 2007 .

[94]  D. Shishin Development of a Thermodynamic Database for Copper Smelting and Converting , 2013 .

[95]  H. Sohn,et al.  Distribution of Gold and Silver between Copper and Matte , 1985 .

[96]  A. J. Naldrett,et al.  Fractional crystallization of sulfide ore liquids at high temperature , 1996 .

[97]  S. Decterov,et al.  Critical assessment and thermodynamic modeling of the Cu–Fe–O system , 2013 .

[98]  L. Darken Melting Points of Iron Oxides on Silica; Phase Equilibria in the System Fe-Si-O as a Function of Gas Composition and Temperature , 1948 .

[99]  H. O’Neill Quartz-fayalite-iron and quartz-fayalite-magnetite equilibria and the free energy of formation of fayalite (Fe 2 SiO 4 ) and magnetite (Fe 3 O 4 ) , 1987 .

[101]  A. Muan,et al.  Phase Equilibria in the System CaO‐Iron Oxide‐SiO2, in Air , 1959 .

[102]  Denis Shishin,et al.  Case Study on the Application of Research to Operations—Calcium Ferrite Slags , 2018 .

[103]  S. Decterov,et al.  Critical thermodynamic re-evaluation and re-optimization of the CaO–FeO–Fe2O3–SiO2 system , 2017 .

[104]  S. Decterov,et al.  Critical Assessment and Thermodynamic Modeling of the Fe-O-S System , 2015 .

[105]  S. Jahanshahi,et al.  Thermodynamics of Arsenic in FeOx-CaO-SiO2 Slags , 2010 .

[106]  P. Hayes,et al.  Phase Equilibria in Ferrous Calcium Silicate Slags: Part III. Copper-Saturated Slag at 1250 °C and 1300 °C at an Oxygen Partial Pressure of 10−6 atm , 2008 .

[107]  K. Watanabe,et al.  The Behaviour of Lead in Silica-Saturated, Copper Smelting Systems , 1980 .

[108]  P. Mackey,et al.  Copper solubility in FeO−Fe2O3−SiO2−Al2O3 slag and distribution equilibria of Pb, Bi, Sb and As between slag and metallic copper , 1975 .

[109]  P. Hayes,et al.  Liquidus temperatures in calcium ferrite slags in equilibrium with molten copper , 2004 .

[110]  Y. Takeda,et al.  Phase equilibrium and minor element distribution between FeOx-SiO2-MgO-based slag and Cu2S-FeS matte at 1573 K under high partial pressures of SO2 , 2000 .

[111]  R. W. Taylor,et al.  The Free Energy of Formation of Some Titanates, Silicates, and Magnesium Aluminate from Measurements Made with Galvanic Cells Involving Solid Electrolytes , 1964 .

[112]  B. Elliot The effect of slag composition on copper losses to silica-saturated iron silicate slags , 2015 .

[113]  L. K. Bailey,et al.  Mathematical modeling of minor-element behavior in flash smelting of copper concentrates and flash converting of copper mattes , 1989 .

[114]  A. Yazawa,et al.  Distribution of Impurities between Crude Copper, White Metal and Silica-Saturated Slag , 1978 .

[115]  S. Jahanshahi,et al.  Copper Solubility and Redox Equilibria in Magnesia Saturated CaO-CuOx-FeOx Slags , 2014, Metallurgical and Materials Transactions B.

[116]  J. Vaughan,et al.  Improved copper smelter and converter productivity through the use of a novel high-grade feed , 2018 .

[117]  H. Sohn,et al.  Thermodynamic modelling of minor-element behaviour in in-bath copper smelting and converting with calcium ferrite slag , 1996 .

[118]  P. Hayes,et al.  Phase Equilibria in Ferrous Calcium Silicate Slags: Part I. Intermediate Oxygen Partial Pressures in the Temperature Range 1200 °C to 1350 °C , 2008 .

[119]  P. Hayes,et al.  Experimental Investigation of Gas/Matte/Spinel Equilibria in the Cu-Fe-O-S System at 1473 K (1200 °C) and P(SO2) = 0.25 atm , 2018, Journal of Phase Equilibria and Diffusion.

[120]  H. Laborit,et al.  [Experimental study]. , 1958, Bulletin mensuel - Societe de medecine militaire francaise.

[121]  H. Merwin,et al.  The system Cu-Fe-S , 1937 .

[122]  P. Taskinen,et al.  Equilibrium Distribution of Precious Metals Between Slag and Copper Matte at 1250–1350 °C , 2015, Journal of Sustainable Metallurgy.

[123]  J. W. Greig On liquid immiscibility in the system FeO-Fe 2 O 3 -Al 2 O 3 SiO 2 , 1927 .

[124]  F. Habashi Extractive Metallurgy of Copper , 1996 .

[125]  Y. Takeda,et al.  Equilibrium Relations between Liquid Copper and Calcium Ferrite Slag , 1982 .

[126]  P. Hayes,et al.  Liquidus Temperatures in the “Cu2O”-FeO-Fe2O3-CaO-SiO2 System at Metallic Copper Saturation, at Fixed Oxygen Partial Pressures, and in Equilibrium with Spinel or Dicalcium Ferrite at 1200 °C and 1250 °C , 2009 .

[127]  D. Swinbourne,et al.  Tellurium distribution in copper anode slimes smelting , 1998 .