Modelling of liquid phases and metal distributions in copper converters: transferring process fundamentals to plant practice
暂无分享,去创建一个
Taufiq Hidayat | Evgueni Jak | Denis Shishin | P. J. Mackey | Peter C. Hayes | P. Hayes | E. Jak | P. Mackey | D. Shishin | T. Hidayat | T. Hidayat
[1] G. Akdogan,et al. Modelling of mixing, mass transfer and phase distribution in a Peirce–Smith converter model , 2013 .
[2] F. Bar,et al. Solubility of oxygen in copper mattes , 1971 .
[3] Guven Akdogan,et al. Sonic injection into a PGM Peirce-Smith converter: CFD modelling and industrial trials , 2015 .
[4] A. Pelton,et al. Thermodynamic optimisation of the FeO–Fe2O3–SiO2 (Fe–O–Si) system with FactSage , 2007 .
[5] K. Itagaki,et al. SOLUBILITY OF COPPER OR NICKEL IN IRON-SILICATE BASE SLAG EQUILIBRATED WITH Cu_2S-FeS OR Ni_3S_2-FeS MATTE UNDER HIGH PARTIAL PRESSURES OF SO_2 , 1998 .
[6] Y. Waseda,et al. Thermodynamic Properties and Structure of Ferrite Slags and Their Process Implications , 1981 .
[7] M. Selleby. An assessment of the Fe-O-Si system , 1997 .
[8] А. И. Лебедев,et al. Синтез, структурные особенности и магнитные характеристики мезопористых композитов Fe 2 O 3 –SiO 2 , 2019, Неорганические материалы.
[9] K. Itagaki,et al. High Temperature Phase Relations in FeOX(X ¼ 1 and 1.33)-CaO-SiO2 Systems under Various Oxygen Partial Pressure , 2005 .
[10] M. Reuter,et al. Distribution of elements between copper and FeOx–CaO–SiO2 slags during pyroprocessing of WEEE: Part 2 – indium , 2014 .
[11] F. J. Tavera,et al. Distribution of Cu, S, O and minor elements between silica-saturated slag, matte and copper-experimental measurements , 1990 .
[12] P. Tan. Applications of thermodynamic modeling in copper converting operations , 2007 .
[13] P. Hayes,et al. Phase Equilibria Studies of the Cu-Fe-O-Si System in Equilibrium with Air and with Metallic Copper , 2012, Metallurgical and Materials Transactions B.
[14] M. Nagamori. Metal loss to slag: Part I. Sulfidic and oxidic dissolution of copper in fayalite slag from low grade matte , 1974, Metallurgical and Materials Transactions B.
[15] H. Eugster,et al. The system Fe-Si-O: Oxygen buffer calibrations to 1,500K , 1983 .
[16] P. Mackey,et al. Thermodynamics of Copper Matte Converting: Part II. Distribution of Au, Ag, Pb, Zn, Ni, Se, Te, Bi, Sb and As Between Copper, Matte and Slag in the Noranda Process , 1978 .
[17] J. Chipman,et al. Oxygen Activity in Iron Oxide Slags , 1953 .
[18] K. Yamaguchi,. Thermodynamic Study of the Equilibrium Distribution of Platinum Group Metals Between Slag and Molten Metals and Slag and Copper Matte , 2018 .
[19] H. Sohn,et al. The trajectories and distribution of particles in a turbulent axisymmetric gas jet injected into a flash furnace shaft , 1988 .
[20] Juho Mäkinen,et al. Production of Matte, White Metal, and Blister Copper by Flash Furnace , 1982 .
[21] G. Iyengar,et al. Chemical potentials of oxygen for fayalite-quartz-lron and fayalite-quartz-magnetite equilibria , 1989 .
[22] B. Sundman,et al. A reassessment of the CaFeO system , 1996 .
[23] P. Chaubal,et al. Thermodynamics for arsenic and antimony in copper matte converting—computer simulation , 1988 .
[24] Compositional Fragmentation Model for the Oxidation of Sulfide Particles in a Flash Reactor , 2014, Metallurgical and Materials Transactions B.
[25] S. Decterov,et al. Thermodynamic assessment and database for the Cu–Fe–O–S system , 2015 .
[26] A. Pelton,et al. Thermodynamic modeling of the Fe-S system , 2005 .
[27] P. Chaubal,et al. Thermodynamics of copper matte converting: Part IV. A priori predictions of the behavior of Au, Ag, Pb, Zn, Ni, Se, Te, Bi, Sb, and As in the noranda process reactor , 1982 .
[28] J. K. Brimacombe,et al. Flow regimes in submerged gas injection , 1979 .
[29] R. Schenck,et al. Gleichgewichtsuntersuchungen über die Reduktions‐, Oxydations‐ und Kohlungsvorgänge beim Eisen. XI , 1932 .
[30] P. Waldner. Thermodynamic Modeling of the Cr-Fe-S System , 2014, Metallurgical and Materials Transactions A.
[31] K. Obst,et al. Untersuchungen im System CaO-FeO n als Beispiel für den Einsatz des Elektronenstrahl-Mikroanalysators zur Bestimmung der festen Phase bei Gleichgewichtsuntersuchungen in Zustandsdiagrammen , 1968 .
[32] L. Cabri. New Data on Phase Relations in the Cu-Fe-S System* , 1973 .
[33] M. Reuter,et al. Tin distribution during smelting of WEEE with copper scrap , 2009 .
[34] M. Selleby. An assessment of the Ca-Fe-O-Si system , 1997 .
[35] G. Kullerud,et al. Thermal Stability of Assemblages in the Cu—Fe—S System , 1966 .
[36] B. Sundman,et al. The assessment of thermodynamic parameters in the FeO and FeSiO systems , 1997 .
[37] D. Swinbourne,et al. Distribution of bismuth between copper and FeOx–CaO–SiO2 slags under copper converting conditions , 2013 .
[38] J. Kapusta. Submerged Gas Jet Penetration: A Study of Bubbling Versus Jetting and Side Versus Bottom Blowing in Copper Bath Smelting , 2017 .
[39] H. Sohn. Chapter 2.1 – Copper Production , 2014 .
[40] P. Hayes,et al. Experimental Techniques for Investigating Calcium Ferrite Slags at Metallic Copper Saturation and Application to the Systems “Cu2O”-“Fe2O3” and “Cu2O”-CaO at Metallic Copper Saturation , 2009 .
[41] S. Decterov,et al. Thermodynamic Assessment of Slag–Matte–Metal Equilibria in the Cu-Fe-O-S-Si System , 2018, Journal of Phase Equilibria and Diffusion.
[42] P. Hayes,et al. Experimental Study of Ferrous Calcium Silicate Slags: Phase Equilibria at $$ {\text{P}}_{{{\text{O}}_{2} }} $$ Between 10−5 atm and 10−7 atm , 2012 .
[43] F. Tsukihashi,et al. Effect of Oxygen Partial Pressure on Liquidus for the CaO-SiO2-FeOx System at 1573 K , 2004 .
[44] P. Hayes,et al. Experimental Study of Gas/Slag/Matte/Spinel Equilibria and Minor Elements Partitioning in the Cu-Fe-O-S-Si System , 2016 .
[45] Marie-Aline Van Ende,et al. FactSage thermochemical software and databases, 2010–2016 , 2016 .
[46] P. Hayes,et al. Experimental Investigation of Gas/Slag/Matte/Spinel Equilibria in the Cu-Fe-O-S-Si System at 1473 K (1200 °C) and P(SO2) = 0.25 atm , 2018, Metallurgical and Materials Transactions B.
[47] M. Nagamori. Metal loss to slag: Part II. oxidic dissolution of nickel in fayalite slag and thermodynamics of continuous converting of nickel-copper matte , 1974, Metallurgical and Materials Transactions B.
[48] P. Mackey. The Physical Chemistry of Copper Smelting Slags—A Review , 1982 .
[49] R. G. Powell,et al. Constitution of the FeO-Fe2O3-SiO2 System at Slagmaking Temperatures , 1953 .
[50] D. A. Hewitt. A redetermination of the fayalite-magnetite-quartz equilibrium between 650 degrees and 850 degrees C , 1978 .
[51] D. Swinbourne,et al. Computational Thermodynamics Modeling of Minor Element Distributions During Copper Flash Converting , 2012, Metallurgical and Materials Transactions B.
[52] Fumitaka Tsukihashi,et al. Phosphorus Partition between CaOsatd.-BaO-SiO2-FetO Slags and Liquid Iron at 1873 K , 1993 .
[53] P. Hayes,et al. Experimental Investigation of Gas/Slag/Matte/Tridymite Equilibria in the Cu-Fe-O-S-Si System in Controlled Gas Atmospheres: Experimental Results at 1473 K (1200 °C) and P(SO2) = 0.25 atm , 2017, Metallurgical and Materials Transactions B.
[54] R. Shimpo,et al. A Study on the Equilibrium between Copper Matte and Slag , 1986 .
[55] N. L. Bowen,et al. The system, FeO-SiO 2 , 1932 .
[56] P. Hayes,et al. Experimental investigation of gas/matte/spinel equilibria in the Cu–Fe–O–S system at 1250°C and P(SO2) = 0.25 atm , 2019, International Journal of Materials Research.
[57] Y. Takeda,et al. Distribution equilibria of minor elements between liquid copper and calcium ferrite slag , 1983 .
[58] J. Park,et al. Thermodynamics of Gold Dissolution Behavior in CaO-SiO2-Al2O3-MgOsat Slag System , 2015, Metallurgical and Materials Transactions B.
[59] R. Snow,et al. The Orthosilicate‐Iron Oxide Portion of the System CaO‐“FeO”‐SiO2 , 1955 .
[60] P. Mackey,et al. Distribution equilibria of Sn, Se and Te between FeO-Fe2O3-SiO2-AI2O3-CuO0.5 slag and metallic copper , 1977 .
[61] Y. Takeda,et al. Thermodynamics of Calcium Ferrite Slags at 1200 and 1300 , 1980 .
[62] P. Hayes,et al. Multicomponent Thermodynamic Databases for Complex Non-ferrous Pyrometallurgical Processes , 2018 .
[63] P. Hayes,et al. Phase Equilibria in Ferrous Calcium Silicate Slags: Part II. Evaluation of Experimental Data and Computer Thermodynamic Models , 2008 .
[64] Y. Takeda,et al. Lead solubility in FeOx-CaO-SiO2 slags at iron saturation , 2000 .
[65] N. L. Bowen,et al. The system CaO-FeO-SiO 2 , 1933 .
[66] P. Hayes,et al. Phase equilibria of “Cu2O”-“FeO”-SiO2-CaO slags at PO2 at 10-8 atm in equilibrium with metallic copper , 2012 .
[67] J. Palacios,et al. The solubility of copper in lime-saturated and calcium ferrite-saturated liquid iron oxide , 1993 .
[68] A. Muan,et al. Phase Equilibria in the System CaO‐Iron Oxide in Air and at 1 Atm. O2 Pressure , 1958 .
[69] C. R. Masson,et al. Thermodynamics and constitution of ferrous silicate melts , 1971 .
[70] P. Barton. Solid Solutions in the System Cu-Fe-S, Part I; The Cu-S and CuFe-S Joins , 1973 .
[71] Thermodynamic modeling of selenide matte converting , 1997 .
[72] J. Dutrizac. Reactions in cubanite and chalcopyrite , 1976 .
[73] M. D. Burdick. Studies on the system lime-ferric oxide-silica , 1940 .
[74] S. Decterov,et al. Experimental Study and Thermodynamic Re-optimization of the FeO-Fe2O3-SiO2 System , 2017 .
[75] Akira Yazawa,et al. Distribution of Various Elements Between Copper, Matte and Slag , 1981 .
[76] D. Swinbourne,et al. Nickel, lead and antimony distributions between ferrous calcium silicate slag and copper at 1300°C , 2009 .
[77] S. Jahanshahi,et al. A thermodynamic study on cobalt containing calcium ferrite and calcium iron silicate slags at 1573 K , 2001 .
[78] S. Goto,et al. Equilibria between silica-saturated iron silicate slags and molten Cu-As, Cu-Sb, and Cu-Bi Alloys , 1984 .
[79] Roberto Parra,et al. Modeling peirce-smith converter operating costs , 2005 .
[80] W. Davenport,et al. Equilibrations of copper matte and fayalite slag under controlled partial pressures of SO2 , 1979 .
[81] H. Sohn,et al. Effects of CaO, Al2O3, and MgO additions on the copper solubility, ferric/ferrous ratio, and minor-element behavior of iron-silicate slags , 1998 .
[82] S. Jahanshahi,et al. Effect of Slag Basicity on Phase Equilibria and Selenium and Tellurium Distribution in Magnesia-Saturated Calcium Iron Silicate Slags , 2010 .
[83] S. Decterov,et al. Critical assessment and thermodynamic modeling of the Cu–O and Cu–O–S systems , 2012 .
[84] S. Jahanshahi,et al. Thermodynamic Modeling of Arsenic in Copper Smelting Processes , 2010 .
[85] Y. Takeda,et al. Distribution Behavior of Various Elements in Copper Smelting Systems , 1984 .
[86] K. Itagaki,et al. Activity and Activity Coefficient of Iron Oxides in the Liquid FeO-Fe2O3-CaO-SiO2 Slag Systems at Intermediate Oxygen Partial Pressures , 2007 .
[87] R. Schuhmann,et al. Thermodynamics of Iron-Silicate Slags: Slags Saturated with Gamma Iron , 1951 .
[88] W. Rankin,et al. Thermodynamics and phase relations of the Fe-O-S-Si2(sat) system at 1200 °C and the effect of copper , 1994 .
[89] G. Richards,et al. A kinetic model of the peirce-smith converter: Part I. Model formulation and validation , 1998 .
[90] K. Itagaki,et al. Phase Relations and Activity of Arsenic in Cu-Fe-S-As System at 1473 K , 2001 .
[91] S. Decterov,et al. Thermodynamic Optimization of the Ca-Fe-O System , 2016, Metallurgical and Materials Transactions B.
[92] Zhang Ting’an,et al. Effects of Blowing Conditions on the Dispersion States of Materials Charged into Bottom Blown Oxygen Smelting Furnace , 2017 .
[93] S. Jahanshahi,et al. Thermodynamics of Selenium and Tellurium in Calcium Ferrite Slags , 2007 .
[94] D. Shishin. Development of a Thermodynamic Database for Copper Smelting and Converting , 2013 .
[95] H. Sohn,et al. Distribution of Gold and Silver between Copper and Matte , 1985 .
[96] A. J. Naldrett,et al. Fractional crystallization of sulfide ore liquids at high temperature , 1996 .
[97] S. Decterov,et al. Critical assessment and thermodynamic modeling of the Cu–Fe–O system , 2013 .
[98] L. Darken. Melting Points of Iron Oxides on Silica; Phase Equilibria in the System Fe-Si-O as a Function of Gas Composition and Temperature , 1948 .
[99] H. O’Neill. Quartz-fayalite-iron and quartz-fayalite-magnetite equilibria and the free energy of formation of fayalite (Fe 2 SiO 4 ) and magnetite (Fe 3 O 4 ) , 1987 .
[101] A. Muan,et al. Phase Equilibria in the System CaO‐Iron Oxide‐SiO2, in Air , 1959 .
[102] Denis Shishin,et al. Case Study on the Application of Research to Operations—Calcium Ferrite Slags , 2018 .
[103] S. Decterov,et al. Critical thermodynamic re-evaluation and re-optimization of the CaO–FeO–Fe2O3–SiO2 system , 2017 .
[104] S. Decterov,et al. Critical Assessment and Thermodynamic Modeling of the Fe-O-S System , 2015 .
[105] S. Jahanshahi,et al. Thermodynamics of Arsenic in FeOx-CaO-SiO2 Slags , 2010 .
[106] P. Hayes,et al. Phase Equilibria in Ferrous Calcium Silicate Slags: Part III. Copper-Saturated Slag at 1250 °C and 1300 °C at an Oxygen Partial Pressure of 10−6 atm , 2008 .
[107] K. Watanabe,et al. The Behaviour of Lead in Silica-Saturated, Copper Smelting Systems , 1980 .
[108] P. Mackey,et al. Copper solubility in FeO−Fe2O3−SiO2−Al2O3 slag and distribution equilibria of Pb, Bi, Sb and As between slag and metallic copper , 1975 .
[109] P. Hayes,et al. Liquidus temperatures in calcium ferrite slags in equilibrium with molten copper , 2004 .
[110] Y. Takeda,et al. Phase equilibrium and minor element distribution between FeOx-SiO2-MgO-based slag and Cu2S-FeS matte at 1573 K under high partial pressures of SO2 , 2000 .
[111] R. W. Taylor,et al. The Free Energy of Formation of Some Titanates, Silicates, and Magnesium Aluminate from Measurements Made with Galvanic Cells Involving Solid Electrolytes , 1964 .
[112] B. Elliot. The effect of slag composition on copper losses to silica-saturated iron silicate slags , 2015 .
[113] L. K. Bailey,et al. Mathematical modeling of minor-element behavior in flash smelting of copper concentrates and flash converting of copper mattes , 1989 .
[114] A. Yazawa,et al. Distribution of Impurities between Crude Copper, White Metal and Silica-Saturated Slag , 1978 .
[115] S. Jahanshahi,et al. Copper Solubility and Redox Equilibria in Magnesia Saturated CaO-CuOx-FeOx Slags , 2014, Metallurgical and Materials Transactions B.
[116] J. Vaughan,et al. Improved copper smelter and converter productivity through the use of a novel high-grade feed , 2018 .
[117] H. Sohn,et al. Thermodynamic modelling of minor-element behaviour in in-bath copper smelting and converting with calcium ferrite slag , 1996 .
[118] P. Hayes,et al. Phase Equilibria in Ferrous Calcium Silicate Slags: Part I. Intermediate Oxygen Partial Pressures in the Temperature Range 1200 °C to 1350 °C , 2008 .
[119] P. Hayes,et al. Experimental Investigation of Gas/Matte/Spinel Equilibria in the Cu-Fe-O-S System at 1473 K (1200 °C) and P(SO2) = 0.25 atm , 2018, Journal of Phase Equilibria and Diffusion.
[120] H. Laborit,et al. [Experimental study]. , 1958, Bulletin mensuel - Societe de medecine militaire francaise.
[121] H. Merwin,et al. The system Cu-Fe-S , 1937 .
[122] P. Taskinen,et al. Equilibrium Distribution of Precious Metals Between Slag and Copper Matte at 1250–1350 °C , 2015, Journal of Sustainable Metallurgy.
[123] J. W. Greig. On liquid immiscibility in the system FeO-Fe 2 O 3 -Al 2 O 3 SiO 2 , 1927 .
[124] F. Habashi. Extractive Metallurgy of Copper , 1996 .
[125] Y. Takeda,et al. Equilibrium Relations between Liquid Copper and Calcium Ferrite Slag , 1982 .
[126] P. Hayes,et al. Liquidus Temperatures in the “Cu2O”-FeO-Fe2O3-CaO-SiO2 System at Metallic Copper Saturation, at Fixed Oxygen Partial Pressures, and in Equilibrium with Spinel or Dicalcium Ferrite at 1200 °C and 1250 °C , 2009 .
[127] D. Swinbourne,et al. Tellurium distribution in copper anode slimes smelting , 1998 .