Bifurcation From Stability to Instability for a Free Boundary Problem Arising in a Tumor Model

[1]  Avner Friedman,et al.  A Free Boundary Problem for an Elliptic-Hyperbolic System: An Application to Tumor Growth , 2003, SIAM J. Math. Anal..

[2]  J. A. Adam,et al.  Diffusion regulated growth characteristics of a spherical prevascular carcinoma , 1990 .

[3]  Avner Friedman,et al.  Symmetry‐breaking bifurcations of free boundary problems in three dimensions , 2003 .

[4]  Avner Friedman,et al.  A Free Boundary Problem for an Elliptic–Parabolic System: Application to a Model of Tumor Growth , 2003 .

[5]  H. Greenspan Models for the Growth of a Solid Tumor by Diffusion , 1972 .

[6]  Jonathan A. Sherrati A survey of models for tumor-immune system dynamics , 1997 .

[7]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[8]  D. McElwain,et al.  Apoptosis as a volume loss mechanism in mathematical models of solid tumor growth , 1978 .

[9]  H M Byrne,et al.  Growth of nonnecrotic tumors in the presence and absence of inhibitors. , 1995, Mathematical biosciences.

[10]  N F Britton,et al.  A qualitative analysis of some models of tissue growth. , 1993, Mathematical biosciences.

[11]  Sophia Maggelakis,et al.  Mathematical model of prevascular growth of a spherical carcinoma-part II , 1993 .

[12]  Helen M. Byrne,et al.  A weakly nonlinear analysis of a model of avascular solid tumour growth , 1999, Journal of mathematical biology.

[13]  Avner Friedman,et al.  Global existence and asymptotic stability for an elliptic-parabolic free boundary problem: An application to a model of tumor growth , 2003 .

[14]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[15]  T. MacRobert Higher Transcendental Functions , 1955, Nature.

[16]  Avner Friedman,et al.  Nonlinear stability of a quasi-static Stefan problem with surface tension : a continuation approach , 1999 .

[17]  Mark A. J. Chaplain,et al.  The Development of a Spatial Pattern in a Model for Cancer Growth , 1993 .

[18]  Anna Nagurney,et al.  A projected dynamical systems model of general financial equilibrium with stability analysis , 1996 .

[19]  John A. Adam,et al.  General Aspects of Modeling Tumor Growth and Immune Response , 1997 .

[20]  G. S. H. Lock,et al.  The effects of tilt, skew and roll on natural convection in a slender, laterally-heated cavity , 1990 .

[21]  Philip K. Maini,et al.  Experimental and Theoretical Advances in Biological Pattern Formation , 1993, NATO ASI Series.

[22]  Avner Friedman,et al.  Symmetry-breaking bifurcation of analytic solutions to free boundary problems: An application to a model of tumor growth , 2000 .

[23]  M. Chaplain,et al.  Modelling the role of cell-cell adhesion in the growth and development of carcinomas , 1996 .

[24]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[25]  H. Weinberger THE STABILITY OF SOLUTIONS BIFURCATING FROM STEADY OR PERIODIC SOLUTIONS , 1977 .

[26]  H. Greenspan On the growth and stability of cell cultures and solid tumors. , 1976, Journal of theoretical biology.

[27]  F Reitich,et al.  Analysis of a mathematical model for the growth of tumors , 1999, Journal of mathematical biology.

[28]  A. Friedman,et al.  Symmetry-Breaking Bifurcations of Charged Drops , 2004 .

[29]  H M Byrne,et al.  The importance of intercellular adhesion in the development of carcinomas. , 1997, IMA journal of mathematics applied in medicine and biology.