A note on the Tate pairing of curves over finite fields
暂无分享,去创建一个
[1] Michael Pohst,et al. Algorithmic algebraic number theory , 1989, Encyclopedia of mathematics and its applications.
[2] Henning Stichtenoth,et al. Algebraic function fields and codes , 1993, Universitext.
[3] G. Frey,et al. A remark concerning m -divisibility and the discrete logarithm in the divisor class group of curves , 1994 .
[4] John J. Cannon,et al. The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..
[5] R. Balasubramanian,et al. The Improbability That an Elliptic Curve Has Subexponential Discrete Log Problem under the Menezes—Okamoto—Vanstone Algorithm , 1998, Journal of Cryptology.
[6] F. He. Computing Riemann-roch Spaces in Algebraic Function Elds and Related Topics , 2001 .
[7] Matthew K. Franklin,et al. Identity-Based Encryption from the Weil Pairing , 2001, CRYPTO.
[8] Steven D. Galbraith,et al. Implementing the Tate Pairing , 2002, ANTS.
[9] Paulo S. L. M. Barreto,et al. Efficient Algorithms for Pairing-Based Cryptosystems , 2002, CRYPTO.
[10] Florian Hess,et al. Efficient Identity Based Signature Schemes Based on Pairings , 2002, Selected Areas in Cryptography.
[11] Florian Hess,et al. Computing Riemann-Roch Spaces in Algebraic Function Fields and Related Topics , 2002, J. Symb. Comput..
[12] P. Stevenhagen,et al. ELLIPTIC FUNCTIONS , 2022 .