Solutions to a quadratic inverse eigenvalue problem

Abstract In this paper, we consider the quadratic inverse eigenvalue problem (QIEP) of constructing real symmetric matrices M , C , and K of size n × n , with ( M , C , K ) ≠ 0 , so that the quadratic matrix polynomial Q ( λ ) = λ 2 M + λ C + K has m ( n m ⩽ 2 n ) prescribed eigenpairs. It is shown that, for almost all prescribed eigenpairs, the QIEP has a solution with M nonsingular if m m ∗ , and has only solutions with ( Q ( λ ) ) ≡ 0 otherwise, where m ∗ = n + ( 1 + 1 + 8 n ) / 2 . We also derive the expression of the general solution of the QIEP for both cases. Furthermore, we develop an algorithm for finding a particular solution to the QIEP with M positive definite if it exists.

[1]  Yuen-Cheng Kuo,et al.  New Methods for Finite Element Model Updating Problems , 2006 .

[2]  B. Datta,et al.  ORTHOGONALITY AND PARTIAL POLE ASSIGNMENT FOR THE SYMMETRIC DEFINITE QUADRATIC PENCIL , 1997 .

[3]  Leiba Rodman,et al.  Spectral analysis of selfadjoint matrix polynomials , 1980 .

[4]  M. Chu,et al.  Updating quadratic models with no spillover effect on unmeasured spectral data , 2007 .

[5]  Biswa Nath Datta,et al.  Symmetry preserving eigenvalue embedding in finite-element model updating of vibrating structures , 2006 .

[6]  P. Lancaster,et al.  Factorization of selfadjoint matrix polynomials with constant signature , 1982 .

[7]  Wen-Wei Lin,et al.  Solutions of the Partially Described Inverse Quadratic Eigenvalue Problem , 2006, SIAM J. Matrix Anal. Appl..

[8]  Peter Lancaster,et al.  Inverse Spectral Problems for Semisimple Damped Vibrating Systems , 2007, SIAM J. Matrix Anal. Appl..

[9]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[10]  Fu-Shang Wei,et al.  Mass and stiffness interaction effects in analytical model modification , 1990 .

[11]  Peter Lancaster,et al.  Lambda-matrices and vibrating systems , 2002 .

[12]  G. M. L. Gladwell Isospectral Vibrating Systems , 2006 .

[13]  M. Friswell,et al.  Direct Updating of Damping and Stiffness Matrices , 1998 .

[14]  Uwe Prells,et al.  Isospectral Vibrating Systems, Part 2: Structure Preserving Transformations , 2005 .

[15]  Karl Meerbergen,et al.  The Quadratic Eigenvalue Problem , 2001, SIAM Rev..

[16]  Uwe Prells,et al.  Inverse problems for damped vibrating systems , 2005 .

[17]  Wen-Wei Lin,et al.  Partial pole assignment for the quadratic pencil by output feedback control with feedback designs , 2005, Numer. Linear Algebra Appl..

[18]  M. Chu,et al.  Spillover Phenomenon in Quadratic Model Updating , 2008 .

[19]  P. Lancaster Isospectral vibrating systems. Part 1. The spectral method , 2005 .

[20]  J. Allwright On maximizing the minimum eigenvalues of a linear combination of symmetric matrices , 1989 .