Neuronal avalanches and coherence potentials

[1]  B. Connors,et al.  Initiation, Propagation, and Termination of Epileptiform Activity in Rodent Neocortex In Vitro Involve Distinct Mechanisms , 2005, The Journal of Neuroscience.

[2]  Stefan Mihalas,et al.  Self-organized criticality occurs in non-conservative neuronal networks during Up states , 2010, Nature physics.

[3]  Viola Priesemann,et al.  Subsampling effects in neuronal avalanche distributions recorded in vivo , 2009, BMC Neuroscience.

[4]  Nils Bertschinger,et al.  Real-Time Computation at the Edge of Chaos in Recurrent Neural Networks , 2004, Neural Computation.

[5]  S. Bornholdt,et al.  Self-organized critical neural networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  A. Aertsen,et al.  Conditions for Propagating Synchronous Spiking and Asynchronous Firing Rates in a Cortical Network Model , 2008, The Journal of Neuroscience.

[7]  Feng Qi Han,et al.  Reverberation of Recent Visual Experience in Spontaneous Cortical Waves , 2008, Neuron.

[8]  Z. Struzik,et al.  On the recurrence time of earthquakes: insight from Vrancea (Romania) intermediate-depth events , 2008 .

[9]  D. Plenz,et al.  The organizing principles of neuronal avalanches: cell assemblies in the cortex? , 2007, Trends in Neurosciences.

[10]  Woodrow L. Shew,et al.  Simultaneous multi-electrode array recording and two-photon calcium imaging of neural activity , 2010, Journal of Neuroscience Methods.

[11]  Ad Aertsen,et al.  Propagation of cortical synfire activity: survival probability in single trials and stability in the mean , 2001, Neural Networks.

[12]  Stanley,et al.  Self-organized branching processes: Mean-field theory for avalanches. , 1995, Physical review letters.

[13]  D. Plenz Theoretical neuroscience: A leak-proof model , 2010 .

[14]  Yuji Ikegaya,et al.  Synfire Chains and Cortical Songs: Temporal Modules of Cortical Activity , 2004, Science.

[15]  L de Arcangelis,et al.  Universality in solar flare and earthquake occurrence. , 2006, Physical review letters.

[16]  Sonja Grün,et al.  Detecting unitary events without discretization of time , 1999, Journal of Neuroscience Methods.

[17]  H. Stanley,et al.  Phase Transitions and Critical Phenomena , 2008 .

[18]  James P. Crutchfield,et al.  Revisiting the Edge of Chaos: Evolving Cellular Automata to Perform Computations , 1993, Complex Syst..

[19]  W. Rall Electrophysiology of a dendritic neuron model. , 1962, Biophysical journal.

[20]  W. Freeman,et al.  Spatial patterns of visual cortical fast EEG during conditioned reflex in a rhesus monkey , 1987, Brain Research.

[21]  A. Belger,et al.  NMDA receptor antagonist effects, cortical glutamatergic function, and schizophrenia: toward a paradigm shift in medication development , 2003, Psychopharmacology.

[22]  W. Singer,et al.  Dynamic predictions: Oscillations and synchrony in top–down processing , 2001, Nature Reviews Neuroscience.

[23]  D. O. Hebb,et al.  The organization of behavior , 1988 .

[24]  Shan Yu,et al.  Higher-Order Interactions Characterized in Cortical Activity , 2011, The Journal of Neuroscience.

[25]  Nicholas Mark Gotts Emergent phenomena in large sparse random arrays of Conway's 'Game of Life' , 2000, Int. J. Syst. Sci..

[26]  T. Koenig,et al.  EEG microstate duration and syntax in acute, medication-naïve, first-episode schizophrenia: a multi-center study , 2005, Psychiatry Research: Neuroimaging.

[27]  Per Bak,et al.  How Nature Works , 1996 .

[28]  D. Plenz,et al.  Homeostasis of neuronal avalanches during postnatal cortex development in vitro , 2008, Journal of Neuroscience Methods.

[29]  D. Sornette,et al.  Epileptic seizures: Quakes of the brain? , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Guoqing Lin,et al.  Southern California Hypocenter Relocation with Waveform Cross- Correlation, Part 2: Results Using Source-Specific Station Terms and Cluster Analysis , 2005 .

[31]  W. Singer,et al.  Synchrony Makes Neurons Fire in Sequence, and Stimulus Properties Determine Who Is Ahead , 2011, The Journal of Neuroscience.

[32]  Woodrow L. Shew,et al.  Neuronal Avalanches Imply Maximum Dynamic Range in Cortical Networks at Criticality , 2009, The Journal of Neuroscience.

[33]  Markus Diesmann,et al.  Activity dynamics and propagation of synchronous spiking in locally connected random networks , 2003, Biological Cybernetics.

[34]  Shimon Marom,et al.  Neural timescales or lack thereof , 2010, Progress in Neurobiology.

[35]  Markus Diesmann,et al.  Limits to the Development of Feed-Forward Structures in Large Recurrent Neuronal Networks , 2011, Front. Comput. Neurosci..

[36]  V. Torre,et al.  On the Dynamics of the Spontaneous Activity in Neuronal Networks , 2007, PloS one.

[37]  Wolf Singer,et al.  Neuronal Synchrony: A Versatile Code for the Definition of Relations? , 1999, Neuron.

[38]  H. Stanley,et al.  Introduction to Phase Transitions and Critical Phenomena , 1972 .

[39]  B. Connors Initiation of synchronized neuronal bursting in neocortex , 1984, Nature.

[40]  J. Krystal,et al.  The NMDA antagonist model for schizophrenia: promise and pitfalls. , 1998, Pharmacopsychiatry.

[41]  V. Braitenberg,et al.  Thoughts on the cerebral cortex. , 1974, Journal of theoretical biology.

[42]  Woodrow L. Shew,et al.  Predicting criticality and dynamic range in complex networks: effects of topology. , 2010, Physical review letters.

[43]  Angelo Gemignani,et al.  Fractal Complexity in Spontaneous EEG Metastable-State Transitions: New Vistas on Integrated Neural Dynamics , 2010, Front. Physiology.

[44]  Olaf Sporns,et al.  Neurobiologically Realistic Determinants of Self-Organized Criticality in Networks of Spiking Neurons , 2011, PLoS Comput. Biol..

[45]  S. Nelson,et al.  Homeostatic plasticity in the developing nervous system , 2004, Nature Reviews Neuroscience.

[46]  T. Sejnowski,et al.  A universal scaling law between gray matter and white matter of cerebral cortex. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Florentin Wörgötter,et al.  Self-Organized Criticality in Developing Neuronal Networks , 2010, PLoS Comput. Biol..

[48]  Michael J. O'Donovan,et al.  The Role of Activity-Dependent Network Depression in the Expression and Self-Regulation of Spontaneous Activity in the Developing Spinal Cord , 2001, The Journal of Neuroscience.

[49]  Ifije E. Ohiorhenuan,et al.  Sparse coding and high-order correlations in fine-scale cortical networks , 2010, Nature.

[50]  W. Freeman,et al.  Change in pattern of ongoing cortical activity with auditory category learning , 2001, Nature.

[51]  Ohad Ben-Shahar,et al.  Stochastic Emergence of Repeating Cortical Motifs in Spontaneous Membrane Potential Fluctuations In Vivo , 2007, Neuron.

[52]  U. Egert,et al.  Extracellular recording in neuronal networks with substrate integrated microelectrode arrays. , 1994, Biosensors & bioelectronics.

[53]  W. Freeman The wave packet: an action potential for the 21st century. , 2003, Journal of integrative neuroscience.

[54]  John M Beggs,et al.  Critical branching captures activity in living neural networks and maximizes the number of metastable States. , 2005, Physical review letters.

[55]  Ad Aertsen,et al.  Stable propagation of synchronous spiking in cortical neural networks , 1999, Nature.

[56]  D. McCormick,et al.  Turning on and off recurrent balanced cortical activity , 2003, Nature.

[57]  D. Plenz,et al.  Inverted-U Profile of Dopamine–NMDA-Mediated Spontaneous Avalanche Recurrence in Superficial Layers of Rat Prefrontal Cortex , 2006, The Journal of Neuroscience.

[58]  D Lehmann,et al.  EEG assessment of brain activity: spatial aspects, segmentation and imaging. , 1984, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[59]  Dietmar Plenz,et al.  Efficient Network Reconstruction from Dynamical Cascades Identifies Small-World Topology of Neuronal Avalanches , 2009, PLoS Comput. Biol..

[60]  J. Schiller,et al.  Dynamics of Excitability over Extended Timescales in Cultured Cortical Neurons , 2010, The Journal of Neuroscience.

[61]  M A Geyer,et al.  Application of entropy measures derived from the ergodic theory of dynamical systems to rat locomotor behavior. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Professor Moshe Abeles,et al.  Local Cortical Circuits , 1982, Studies of Brain Function.

[63]  David M. Raup,et al.  How Nature Works: The Science of Self-Organized Criticality , 1997 .

[64]  Alexander A. Fingelkurts,et al.  Timing in cognition and EEG brain dynamics: discreteness versus continuity , 2006, Cognitive Processing.

[65]  Woodrow L. Shew,et al.  Information Capacity and Transmission Are Maximized in Balanced Cortical Networks with Neuronal Avalanches , 2010, The Journal of Neuroscience.

[66]  Henrik Jeldtoft Jensen,et al.  Self-Organized Criticality , 1998 .

[67]  Robert A. Legenstein,et al.  2007 Special Issue: Edge of chaos and prediction of computational performance for neural circuit models , 2007 .

[68]  D Lehmann,et al.  EEG alpha map series: brain micro-states by space-oriented adaptive segmentation. , 1987, Electroencephalography and clinical neurophysiology.

[69]  L. L. Bologna,et al.  Self-organization and neuronal avalanches in networks of dissociated cortical neurons , 2008, Neuroscience.

[70]  TJ Gawne,et al.  How independent are the messages carried by adjacent inferior temporal cortical neurons? , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[71]  K. Linkenkaer-Hansen,et al.  Long-Range Temporal Correlations and Scaling Behavior in Human Brain Oscillations , 2001, The Journal of Neuroscience.

[72]  D. Plenz,et al.  Coherence Potentials: Loss-Less, All-or-None Network Events in the Cortex , 2010, PLoS biology.

[73]  R. Eckhorn,et al.  Coherent oscillations: A mechanism of feature linking in the visual cortex? , 1988, Biological Cybernetics.

[74]  U. Egert,et al.  A thin film microelectrode array for monitoring extracellular neuronal activity in vitro. , 1994, Biosensors & bioelectronics.

[75]  A. Opstal Dynamic Patterns: The Self-Organization of Brain and Behavior , 1995 .

[76]  J. Martinerie,et al.  The brainweb: Phase synchronization and large-scale integration , 2001, Nature Reviews Neuroscience.

[77]  Thomas H. Jordan,et al.  Foreshock sequences and short-term earthquake predictability on East Pacific Rise transform faults , 2004, Nature.

[78]  Brian Litt,et al.  Evidence for self-organized criticality in human epileptic hippocampus , 2002, Neuroreport.

[79]  John M. Beggs,et al.  Neuronal Avalanches in Neocortical Circuits , 2003, The Journal of Neuroscience.

[80]  Karl J. Friston Transients, Metastability, and Neuronal Dynamics , 1997, NeuroImage.

[81]  D. Sornette Critical Phenomena in Natural Sciences: Chaos, Fractals, Selforganization and Disorder: Concepts and Tools , 2000 .

[82]  J. Crutchfield,et al.  Upper bound on the products of particle interactions in cellular automata , 2000, nlin/0008038.

[83]  M. Nicolelis,et al.  Spike Avalanches Exhibit Universal Dynamics across the Sleep-Wake Cycle , 2010, PloS one.

[84]  J. M. Herrmann,et al.  Dynamical synapses causing self-organized criticality in neural networks , 2007, 0712.1003.

[85]  D. Plenz,et al.  Spontaneous cortical activity in awake monkeys composed of neuronal avalanches , 2009, Proceedings of the National Academy of Sciences.

[86]  A. Aertsen,et al.  Two-dimensional monitoring of spiking networks in acute brain slices , 2001, Experimental Brain Research.

[87]  B. Connors,et al.  Mechanisms of neocortical epileptogenesis in vitro. , 1982, Journal of neurophysiology.

[88]  Shimon Marom,et al.  Interaction between Duration of Activity and Time Course of Recovery from Slow Inactivation in Mammalian Brain Na+Channels , 1998, The Journal of Neuroscience.

[89]  Danny Eytan,et al.  Dynamics and Effective Topology Underlying Synchronization in Networks of Cortical Neurons , 2006, The Journal of Neuroscience.

[90]  Woodrow L. Shew,et al.  Maximal Variability of Phase Synchrony in Cortical Networks with Neuronal Avalanches , 2012, The Journal of Neuroscience.

[91]  Danny Eytan,et al.  Order-Based Representation in Random Networks of Cortical Neurons , 2008, PLoS Comput. Biol..

[92]  P. Bak,et al.  Solitons in the one-dimensional forest fire model. , 2000, Physical review letters.

[93]  Christopher G. Langton,et al.  Computation at the edge of chaos: Phase transitions and emergent computation , 1990 .

[94]  M. Egan,et al.  Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[95]  F. Varela,et al.  Perception's shadow: long-distance synchronization of human brain activity , 1999, Nature.

[96]  A. Aertsen,et al.  Evaluation of neuronal connectivity: Sensitivity of cross-correlation , 1985, Brain Research.

[97]  A. Aertsen,et al.  Representation of cooperative firing activity among simultaneously recorded neurons. , 1985, Journal of neurophysiology.

[98]  J. M. Herrmann,et al.  Finite-size effects of avalanche dynamics. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[99]  A. Aertsen,et al.  Spike synchronization and rate modulation differentially involved in motor cortical function. , 1997, Science.

[100]  E R John,et al.  Neural Readout from Memory during Generalization , 1969, Science.

[101]  John M. Beggs,et al.  Behavioral / Systems / Cognitive Neuronal Avalanches Are Diverse and Precise Activity Patterns That Are Stable for Many Hours in Cortical Slice Cultures , 2004 .

[102]  Heiko J. Luhmann,et al.  Impairment of intracortical GABAergic inhibition in a rat model of absence epilepsy , 1995, Epilepsy Research.

[103]  Dietrich Lehmann,et al.  Coherence and phase locking in the scalp EEG and between LORETA model sources, and microstates as putative mechanisms of brain temporo-spatial functional organization , 2006, Journal of Physiology-Paris.

[104]  A. Romero,et al.  InN thin film lattice dynamics by grazing incidence inelastic x-ray scattering. , 2011, Physical review letters.

[105]  A. Fingelkurts,et al.  MAKING COMPLEXITY SIMPLER: MULTIVARIABILITY AND METASTABILITY IN THE BRAIN , 2004, The International journal of neuroscience.

[106]  Tim P Vogels,et al.  Signal Propagation and Logic Gating in Networks of Integrate-and-Fire Neurons , 2005, The Journal of Neuroscience.

[107]  L. de Arcangelis,et al.  Self-organized criticality model for brain plasticity. , 2006, Physical review letters.

[108]  E. Vaadia,et al.  Spatiotemporal firing patterns in the frontal cortex of behaving monkeys. , 1993, Journal of neurophysiology.

[109]  Stephen Wolfram,et al.  Universality and complexity in cellular automata , 1983 .

[110]  L. de Arcangelis,et al.  Learning as a phenomenon occurring in a critical state , 2010, Proceedings of the National Academy of Sciences.

[111]  J. Michael Herrmann,et al.  Criticality of avalanche dynamics in adaptive recurrent networks , 2006, Neurocomputing.

[112]  O. Kinouchi,et al.  Optimal dynamical range of excitable networks at criticality , 2006, q-bio/0601037.

[113]  Daniel Lehmann,et al.  Modeling Compositionality by Dynamic Binding of Synfire Chains , 2004, Journal of Computational Neuroscience.

[114]  Carla Perrone-Capano,et al.  Activity-dependent neural network model on scale-free networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[115]  Arthur Gretton,et al.  Inferring spike trains from local field potentials. , 2008, Journal of neurophysiology.

[116]  Tomoki Fukai,et al.  Local cortical circuit model inferred from power-law distributed neuronal avalanches , 2007, Journal of Computational Neuroscience.

[117]  P. Goldman-Rakic,et al.  Dopamine D1 receptor mechanisms in the cognitive performance of young adult and aged monkeys , 1994, Psychopharmacology.

[118]  S. Kauffman,et al.  Measures for information propagation in Boolean networks , 2007 .

[119]  John M. Beggs,et al.  Aberrant Neuronal Avalanches in Cortical Tissue Removed From Juvenile Epilepsy Patients , 2010, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[120]  Ezequiel V. Albano,et al.  Spreading analysis and finite-size scaling study of the critical behavior of a forest fire model with immune trees , 1995 .

[121]  Michael Okun,et al.  Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities , 2008, Nature Neuroscience.

[122]  W. Singer,et al.  Neuronal avalanches in spontaneous activity in vivo. , 2010, Journal of neurophysiology.

[123]  Y. Ogata,et al.  The Centenary of the Omori Formula for a Decay Law of Aftershock Activity , 1995 .

[124]  Xiaoming Jin,et al.  Epilepsy following cortical injury: Cellular and molecular mechanisms as targets for potential prophylaxis , 2009, Epilepsia.

[125]  D. Plenz,et al.  Neuronal avalanches organize as nested theta- and beta/gamma-oscillations during development of cortical layer 2/3 , 2008, Proceedings of the National Academy of Sciences.

[126]  Andreas Klaus,et al.  Statistical Analyses Support Power Law Distributions Found in Neuronal Avalanches , 2011, PloS one.

[127]  Donald O. Walter,et al.  Mass action in the nervous system , 1975 .

[128]  W. Singer,et al.  Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties , 1989, Nature.

[129]  K. Svoboda,et al.  Rapid Development and Plasticity of Layer 2/3 Maps in Rat Barrel Cortex In Vivo , 2001, Neuron.