Electrochemical and in-situ X-ray diffraction studies of Ti3C2Tx MXene in ionic liquid electrolyte

[1]  P. Taberna,et al.  Capacitance of Ti3C2Tx MXene in ionic liquid electrolyte , 2016 .

[2]  Yury Gogotsi,et al.  Porous Two‐Dimensional Transition Metal Carbide (MXene) Flakes for High‐Performance Li‐Ion Storage , 2016 .

[3]  Xiqian Yu,et al.  Probing the Mechanism of High Capacitance in 2D Titanium Carbide Using In Situ X‐Ray Absorption Spectroscopy , 2015 .

[4]  V. Presser,et al.  Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2 , 2011, Advanced materials.

[5]  Liquan Chen,et al.  Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X. , 2015, Journal of the American Chemical Society.

[6]  Pierre-Louis Taberna,et al.  High capacitance of surface-modified 2D titanium carbide in acidic electrolyte , 2014 .

[7]  Yury Gogotsi,et al.  Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide , 2013, Science.

[8]  Zengling Wang,et al.  Preparation and capacitance property of MnO2-pillared Ni(2+)-Fe3+ layered double hydroxides nanocomposite. , 2010, Journal of colloid and interface science.

[9]  Miaofang Chi,et al.  In situ X-ray diffraction study of the lithium excess layered oxide compound Li[Li0.2Ni0.2Mn0.6]O2 during electrochemical cycling , 2012 .

[10]  Hui Zhang,et al.  Self-assembled Ti3C2Tx MXene film with high gravimetric capacitance. , 2015, Chemical communications.

[11]  Y. Gogotsi,et al.  Synthesis of two-dimensional materials by selective extraction. , 2015, Accounts of chemical research.

[12]  Yury Gogotsi,et al.  Amine‐Assisted Delamination of Nb2C MXene for Li‐Ion Energy Storage Devices , 2015, Advanced materials.

[13]  Yury Gogotsi,et al.  New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. , 2013, Journal of the American Chemical Society.

[14]  Yury Gogotsi,et al.  Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance , 2014, Nature.

[15]  Yury Gogotsi,et al.  Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries. , 2014, ACS nano.

[16]  Yury Gogotsi,et al.  25th Anniversary Article: MXenes: A New Family of Two‐Dimensional Materials , 2014, Advanced materials.

[17]  Yury Gogotsi,et al.  Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). , 2016, Nanoscale.

[18]  Itaru Honma,et al.  Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode. , 2007, Journal of the American Chemical Society.

[19]  Majid Beidaghi,et al.  Solving the Capacitive Paradox of 2D MXene using Electrochemical Quartz‐Crystal Admittance and In Situ Electronic Conductance Measurements , 2015 .

[20]  J. Tarascon,et al.  Insertion compounds and composites made by ball milling for advanced sodium-ion batteries , 2016, Nature Communications.

[21]  A. Wokaun,et al.  In-situ XRD and dilatometry investigation of the formation of pillared graphene via electrochemical activation of partially reduced graphite oxide , 2014 .

[22]  Y. Gogotsi,et al.  Ti₃C₂ MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. , 2014, ACS applied materials & interfaces.

[23]  Atsuo Yamada,et al.  Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors , 2015, Nature Communications.

[24]  David Jones High performance , 1989, Nature.

[25]  Pierre-Louis Taberna,et al.  Two-Dimensional Vanadium Carbide (MXene) as Positive Electrode for Sodium-Ion Capacitors. , 2015, The journal of physical chemistry letters.

[26]  P. Taberna,et al.  Steric effects in adsorption of ions from mixed electrolytes into microporous carbon , 2012 .

[27]  Pierre-Louis Taberna,et al.  MXene: a promising transition metal carbide anode for lithium-ion batteries , 2012 .

[28]  Y. Gogotsi,et al.  MoS2 Nanosheets Vertically Aligned on Carbon Paper: A Freestanding Electrode for Highly Reversible Sodium‐Ion Batteries , 2016 .

[29]  Pierre-Louis Taberna,et al.  Capacitance of two-dimensional titanium carbide (MXene) and MXene/carbon nanotube composites in organic electrolytes , 2016 .

[30]  Bruce Dunn,et al.  High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. , 2013, Nature materials.

[31]  Yury Gogotsi,et al.  Chemical vapour deposition: Transition metal carbides go 2D. , 2015, Nature materials.

[32]  Dong-Hwa Seo,et al.  Ab Initio Study of the Sodium Intercalation and Intermediate Phases in Na0.44MnO2 for Sodium-Ion Battery , 2012 .

[33]  Pierre-Louis Taberna,et al.  A Non-Aqueous Asymmetric Cell with a Ti2C-Based Two-Dimensional Negative Electrode , 2012 .

[34]  M. Panzer,et al.  High-performance, mechanically compliant silica-based ionogels for electrical energy storage applications , 2012 .